view druntime/src/compiler/ldc/util/cpuid.d @ 1458:e0b2d67cfe7c

Added druntime (this should be removed once it works).
author Robert Clipsham <robert@octarineparrot.com>
date Tue, 02 Jun 2009 17:43:06 +0100
parents
children
line wrap: on
line source

/** 
 * Identify the characteristics of the host CPU, providing information
 * about cache sizes and assembly optimisation hints.
 *
 * Some of this information was extremely difficult to track down. Some of the
 * documents below were found only in cached versions stored by search engines!
 * This code relies on information found in:
	
 * - "Intel(R) 64 and IA-32 Architectures Software Developers Manual,
 *	  Volume 2A: Instruction Set Reference, A-M" (2007).
 * - "AMD CPUID Specification", Advanced Micro Devices, Rev 2.28 (2008).
 * - "AMD Processor Recognition Application Note For Processors Prior to AMD
 *    Family 0Fh Processors", Advanced Micro Devices, Rev 3.13 (2005).
 * - "AMD Geode(TM) GX Processors Data Book",
 *    Advanced Micro Devices, Publication ID 31505E, (2005).
 * - "AMD K6 Processor Code Optimisation", Advanced Micro Devices, Rev D (2000).
 * - "Application note 106: Software Customization for the 6x86 Family",
 *    Cyrix Corporation, Rev 1.5 (1998)
 * - http://ftp.intron.ac/pub/document/cpu/cpuid.htm
 * - "Geode(TM) GX1 Processor Series Low Power Integrated X86 Solution",
 *   National Semiconductor, (2002)
 * - "The VIA Isaiah Architecture", G. Glenn Henry, Centaur Technology, Inc (2008).
 * - http://www.sandpile.org/ia32/cpuid.htm
 * - http://grafi.ii.pw.edu.pl/gbm/x86/cpuid.html
 * - "What every programmer should know about memory",
 *    Ulrich Depper, Red Hat, Inc., (2007). 
 * 
 * Bugs: Currently only works on x86 and Itanium CPUs.
 *      Many processors have bugs in their microcode for the CPUID instruction,
 *      so sometimes the cache information may be incorrect.
 *
 * Copyright: Copyright Don Clugston 2007 - 2009.
 * License:   <a href="http://www.boost.org/LICENSE_1_0.txt>Boost License 1.0</a>.
 * Authors:   Don Clugston, Tomas Lindquist Olsen &lt;tomas@famolsen.dk&gt;
 *
 *          Copyright Don Clugston 2007 - 2009.
 * Distributed under the Boost Software License, Version 1.0.
 *    (See accompanying file LICENSE_1_0.txt or copy at
 *          http://www.boost.org/LICENSE_1_0.txt)
 */
module rt.util.cpuid;

// If optimizing for a particular processor, it is generally better
// to identify based on features rather than model. NOTE: Normally
// it's only worthwhile to optimise for the latest Intel and AMD CPU,
// with a backup for other CPUs.
// Pentium    -- preferPentium1()
// PMMX       --   + mmx()
// PPro       -- default
// PII        --   + mmx()
// PIII       --   + mmx() + sse()
// PentiumM   --   + mmx() + sse() + sse2()
// Pentium4   -- preferPentium4()
// PentiumD   --   + isX86_64()
// Core2      -- default + isX86_64()
// AMD K5     -- preferPentium1()
// AMD K6     --   + mmx()
// AMD K6-II  --   + mmx() + 3dnow()
// AMD K7     -- preferAthlon()
// AMD K8     --   + sse2()
// AMD K10    --   + isX86_64()
// Cyrix 6x86 -- preferPentium1()
//    6x86MX  --   + mmx()

public:

/// Cache size and behaviour
struct CacheInfo
{
    /// Size of the cache, in kilobytes, per CPU.
    /// For L1 unified (data + code) caches, this size is half the physical size.
    /// (we don't halve it for larger sizes, since normally
    /// data size is much greater than code size for critical loops).
	uint size;
    /// Number of ways of associativity, eg:
    /// 1 = direct mapped
    /// 2 = 2-way set associative
    /// 3 = 3-way set associative
    /// ubyte.max = fully associative
	ubyte associativity;
    /// Number of bytes read into the cache when a cache miss occurs.
	uint lineSize;
}

public:
	/// Returns vendor string, for display purposes only.
	/// Do NOT use this to determine features!
	/// Note that some CPUs have programmable vendorIDs.
	char[] vendor()		{return vendorID;}
	/// Returns processor string, for display purposes only
	char[] processor()	{return processorName;}    
	
	/// The data caches. If there are fewer than 5 physical caches levels,
	/// the remaining levels are set to uint.max (== entire memory space)
	__gshared CacheInfo[5] datacache;
	/// Does it have an x87 FPU on-chip?
	bool x87onChip()    {return (features&FPU_BIT)!=0;}
    /// Is MMX supported?
    bool mmx()			{return (features&MMX_BIT)!=0;}
    /// Is SSE supported?
    bool sse()			{return (features&SSE_BIT)!=0;}
    /// Is SSE2 supported?
    bool sse2()			{return (features&SSE2_BIT)!=0;}
    /// Is SSE3 supported?
    bool sse3()			{return (miscfeatures&SSE3_BIT)!=0;}
    /// Is SSSE3 supported?
    bool ssse3()		{return (miscfeatures&SSSE3_BIT)!=0;}
    /// Is SSE4.1 supported?
    bool sse41()		{return (miscfeatures&SSE41_BIT)!=0;}
    /// Is SSE4.2 supported?
    bool sse42()		{return (miscfeatures&SSE42_BIT)!=0;}
    /// Is SSE4a supported?
    bool sse4a()        {return (amdmiscfeatures&SSE4A_BIT)!=0;}
    /// Is SSE5 supported?
    bool sse5()			{return (amdmiscfeatures&SSE5_BIT)!=0;}
    /// Is AMD 3DNOW supported?
    bool amd3dnow()		{return (amdfeatures&AMD_3DNOW_BIT)!=0;}
    /// Is AMD 3DNOW Ext supported?
    bool amd3dnowExt()	{return (amdfeatures&AMD_3DNOW_EXT_BIT)!=0;}
    /// Are AMD extensions to MMX supported?
    bool amdMmx()		{return (amdfeatures&AMD_MMX_BIT)!=0;}
    /// Is fxsave/fxrstor supported?
    bool hasFxsr()			{return (features&FXSR_BIT)!=0;}
    /// Is cmov supported?
    bool hasCmov()			{return (features&CMOV_BIT)!=0;}
    /// Is rdtsc supported?
    bool hasRdtsc()			{return (features&TIMESTAMP_BIT)!=0;}
    /// Is cmpxchg8b supported?
    bool hasCmpxchg8b()		{return (features&CMPXCHG8B_BIT)!=0;}
    /// Is cmpxchg8b supported?
    bool hasCmpxchg16b()	{return (miscfeatures&CMPXCHG16B_BIT)!=0;}
    /// Is 3DNow prefetch supported?
    bool has3dnowPrefetch()
    	{return (amdmiscfeatures&AMD_3DNOW_PREFETCH_BIT)!=0;}
    /// Are LAHF and SAHF supported in 64-bit mode?
    bool hasLahfSahf()			{return (amdmiscfeatures&LAHFSAHF_BIT)!=0;}
    /// Is POPCNT supported?
    bool hasPopcnt()		{return (miscfeatures&POPCNT_BIT)!=0;}    
    /// Is LZCNT supported?
    bool hasLzcnt()			{return (amdmiscfeatures&LZCNT_BIT)!=0;}
    /// Is this an Intel64 or AMD 64?
    bool isX86_64()			{return (amdfeatures&AMD64_BIT)!=0;}
            
    /// Is this an IA64 (Itanium) processor?
    bool isItanium()        { return (features&IA64_BIT)!=0; }

    /// Is hyperthreading supported?
    bool hyperThreading()   { return maxThreads>maxCores; }
    /// Returns number of threads per CPU
    uint threadsPerCPU()	{return maxThreads;}
    /// Returns number of cores in CPU
    uint coresPerCPU()		{return maxCores;}
    
    /// Optimisation hints for assembly code.
    /// For forward compatibility, the CPU is compared against different
    /// microarchitectures. For 32-bit X86, comparisons are made against
    /// the Intel PPro/PII/PIII/PM family.
    ///
    /// The major 32-bit x86 microarchitecture 'dynasties' have been:
    /// (1) Intel P6 (PentiumPro, PII, PIII, PM, Core, Core2).
    /// (2) AMD Athlon (K7, K8, K10).
    /// (3) Intel NetBurst (Pentium 4, Pentium D).
    /// (4) In-order Pentium (Pentium1, PMMX)
    /// Other early CPUs (Nx586, AMD K5, K6, Centaur C3, Transmeta,
    ///   Cyrix, Rise) were mostly in-order.
    /// Some new processors do not fit into the existing categories:
    /// Intel Atom 230/330 (family 6, model 0x1C) is an in-order core.
    /// Centaur Isiah = VIA Nano (family 6, model F) is an out-of-order core.
    ///
    /// Within each dynasty, the optimisation techniques are largely
    /// identical (eg, use instruction pairing for group 4). Major
    /// instruction set improvements occur within each group.
    
    /// Does this CPU perform better on AMD K7 code than PentiumPro..Core2 code?
    bool preferAthlon() { return probablyAMD && family >=6; }
    /// Does this CPU perform better on Pentium4 code than PentiumPro..Core2 code?
    bool preferPentium4() { return probablyIntel && family == 0xF; }
    /// Does this CPU perform better on Pentium I code than Pentium Pro code?
    bool preferPentium1() { return family < 6 || (family==6 && model < 0xF && !probablyIntel); }

__gshared:
public:
    /// Processor type (vendor-dependent).
    /// This should be visible ONLY for display purposes.
    uint stepping, model, family;
    uint numCacheLevels = 1;
private:
	bool probablyIntel; // true = _probably_ an Intel processor, might be faking
	bool probablyAMD; // true = _probably_ an AMD processor
	char [12] vendorID;
	char [] processorName;
	char [48] processorNameBuffer;
	uint features = 0;     // mmx, sse, sse2, hyperthreading, etc
	uint miscfeatures = 0; // sse3, etc.
	uint amdfeatures = 0;  // 3DNow!, mmxext, etc
	uint amdmiscfeatures = 0; // sse4a, sse5, svm, etc
	uint maxCores = 1;
	uint maxThreads = 1;
	// Note that this may indicate multi-core rather than hyperthreading.
    bool hyperThreadingBit()	{ return (features&HTT_BIT)!=0;}
    
    // feature flags CPUID1_EDX
    enum : uint
    {
    	FPU_BIT = 1,
	    TIMESTAMP_BIT = 1<<4, // rdtsc
	    MDSR_BIT = 1<<5,      // RDMSR/WRMSR
	    CMPXCHG8B_BIT = 1<<8,
    	    CMOV_BIT = 1<<15,
	    MMX_BIT = 1<<23,
	    FXSR_BIT = 1<<24,
	    SSE_BIT = 1<<25,
	    SSE2_BIT = 1<<26,
	    HTT_BIT = 1<<28,
	    IA64_BIT = 1<<30
    }
    // feature flags misc CPUID1_ECX
    enum : uint
    {
	    SSE3_BIT = 1,
            PCLMULQDQ_BIT = 1<<1, // from AVX
	    MWAIT_BIT = 1<<3,
	    SSSE3_BIT = 1<<9,
            FMA_BIT = 1<<12,     // from AVX
	    CMPXCHG16B_BIT = 1<<13,
	    SSE41_BIT = 1<<19,
	    SSE42_BIT = 1<<20,
	    POPCNT_BIT = 1<<23,
            AES_BIT = 1<<25, // AES instructions from AVX
            OSXSAVE_BIT = 1<<27, // Used for AVX
            AVX_BIT = 1<<28
    }
/+    
version(X86_64) {    
    bool hasAVXinHardware() {
        // This only indicates hardware support, not OS support.
        return (miscfeatures&AVX_BIT) && (miscfeatures&OSXSAVE_BIT);
    }
    // Is AVX supported (in both hardware & OS)?
    bool Avx() {
        if (!hasAVXinHardware()) return false;
        // Check for OS support
        uint xfeatures;
        asm {mov ECX, 0; xgetbv; mov xfeatures, EAX; }
        return (xfeatures&0x6)==6;
    }
    bool hasAvxFma() {
        if (!AVX()) return false;
        return (features&FMA_BIT)!=0;        
    }
}
+/    
    // AMD feature flags CPUID80000001_EDX
    enum : uint
    {
	    AMD_MMX_BIT = 1<<22,
//	    FXR_OR_CYRIXMMX_BIT = 1<<24, // Cyrix/NS: 6x86MMX instructions. 
	    FFXSR_BIT = 1<<25,
	    PAGE1GB_BIT = 1<<26, // support for 1GB pages
	    RDTSCP_BIT = 1<<27,
	    AMD64_BIT = 1<<29,
	    AMD_3DNOW_EXT_BIT = 1<<30,
	    AMD_3DNOW_BIT = 1<<31
    }
    // AMD misc feature flags CPUID80000001_ECX
    enum : uint
    {
    	LAHFSAHF_BIT = 1,
    	LZCNT_BIT = 1<<5,
    	SSE4A_BIT = 1<<6,    	
    	AMD_3DNOW_PREFETCH_BIT = 1<<8,
    	SSE5_BIT = 1<<11
    }

version(GNU){
    // GDC is a filthy liar. It can't actually do inline asm.
} else version(D_InlineAsm_X86) {
    version = Really_D_InlineAsm_X86;
}

version(Really_D_InlineAsm_X86) {
// Note that this code will also work for Itanium in x86 mode.

shared uint max_cpuid, max_extended_cpuid;

// CPUID2: "cache and tlb information"
void getcacheinfoCPUID2()
{
	// We are only interested in the data caches
	void decipherCpuid2(ubyte x) {
		if (x==0) return;
		// Values from http://www.sandpile.org/ia32/cpuid.htm.
		// Includes Itanium and non-Intel CPUs.
		//
		immutable ubyte [47] ids = [
			0x0A, 0x0C, 0x2C, 0x60, 0x0E, 0x66, 0x67, 0x68,
			// level 2 cache
			0x41, 0x42, 0x43, 0x44, 0x45, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7F,
		    0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x49, 0x4E,
		    0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x48, 0x80, 0x81,
		    // level 3 cache
			0x22, 0x23, 0x25, 0x29, 0x46, 0x47, 0x4A, 0x4B, 0x4C, 0x4D
		];
		immutable uint [47] sizes = [
			8, 16, 32, 16, 24, 8, 16, 32,
		    128, 256, 512, 1024, 2048, 1024, 128, 256, 512, 1024, 2048, 512,
		    256, 512, 1024, 2048, 512, 1024, 4096, 6*1024,
		    128, 192, 128, 256, 384, 512, 3072, 512, 128,		    
			512, 1024, 2048, 4096, 4096, 8192, 6*1024, 8192, 12*1024, 16*1024
		];
	// CPUBUG: Pentium M reports 0x2C but tests show it is only 4-way associative
		immutable ubyte [47] ways = [
			2, 4, 8, 8, 6, 4, 4, 4,
		    4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 2,
		    8, 8, 8, 8, 4, 8, 16, 24,
		    4, 6, 2, 4, 6, 4, 12, 8, 8,
			4, 8, 8, 8, 4, 8, 12, 16, 12, 16
		];
		enum { FIRSTDATA2 = 8, FIRSTDATA3 = 28+9 }
		for (int i=0; i< ids.length; ++i) {
			if (x==ids[i]) {
				int level = i< FIRSTDATA2 ? 0: i<FIRSTDATA3 ? 1 : 2;
				if (x==0x49 && family==0xF && model==0x6) level=2;
				datacache[level].size=sizes[i];
				datacache[level].associativity=ways[i];
				if (level == 3 || x==0x2C || (x>=0x48 && x<=0x80) 
                                   || x==0x86 || x==0x87
                                   || (x>=0x66 && x<=0x68) || (x>=0x39 && x<=0x3E)){
					datacache[level].lineSize = 64;
				} else datacache[level].lineSize = 32;
			}
		}
	}

	uint[4] a;	
	bool firstTime = true;
	// On a multi-core system, this could theoretically fail, but it's only used
	// for old single-core CPUs.
	uint numinfos = 1;
	do {
		asm {
			mov EAX, 2;
			cpuid;
			mov a, EAX;
			mov a+4, EBX;
			mov a+8, ECX;
			mov a+12, EDX;
		}
		if (firstTime) {
			if (a[0]==0x0000_7001 && a[3]==0x80 && a[1]==0 && a[2]==0) {
		// Cyrix MediaGX MMXEnhanced returns: EAX= 00007001, EDX=00000080.
		// These are NOT standard Intel values
		// (TLB = 32 entry, 4 way associative, 4K pages)
		// (L1 cache = 16K, 4way, linesize16)
				datacache[0].size=8;
				datacache[0].associativity=4;
				datacache[0].lineSize=16;
				return;				
			}
			// lsb of a is how many times to loop.
			numinfos = a[0] & 0xFF;
			// and otherwise it should be ignored
			a[0] &= 0xFFFF_FF00;
			firstTime = false;
		}
		for (int c=0; c<4;++c) {
			// high bit set == no info.
			if (a[c] & 0x8000_0000) continue;
			decipherCpuid2(cast(ubyte)(a[c] & 0xFF));
			decipherCpuid2(cast(ubyte)((a[c]>>8) & 0xFF));
			decipherCpuid2(cast(ubyte)((a[c]>>16) & 0xFF));
			decipherCpuid2(cast(ubyte)((a[c]>>24) & 0xFF));
		}
	} while (--numinfos);
}

// CPUID4: "Deterministic cache parameters" leaf
void getcacheinfoCPUID4()
{
	int cachenum = 0;
	for(;;) {
		uint a, b, number_of_sets;	
		asm {
			mov EAX, 4;
			mov ECX, cachenum;
			cpuid;
			mov a, EAX;
			mov b, EBX;
			mov number_of_sets, ECX;
		}
		++cachenum;
		if ((a&0x1F)==0) break; // no more caches
		uint numthreads = ((a>>14) & 0xFFF)  + 1;
		uint numcores = ((a>>26) & 0x3F) + 1;
		if (numcores > maxCores) maxCores = numcores;
		if ((a&0x1F)!=1 && ((a&0x1F)!=3)) continue; // we only want data & unified caches
		
		++number_of_sets;
		ubyte level = cast(ubyte)(((a>>5)&7)-1);
		if (level > datacache.length) continue; // ignore deep caches
		datacache[level].associativity = a & 0x200 ? ubyte.max :cast(ubyte)((b>>22)+1);
		datacache[level].lineSize = (b & 0xFFF)+ 1; // system coherency line size
		uint line_partitions = ((b >> 12)& 0x3FF) + 1;
		// Size = number of sets * associativity * cachelinesize * linepartitions
		// and must convert to Kb, also dividing by the number of hyperthreads using this cache.
		ulong sz = (datacache[level].associativity< ubyte.max)? number_of_sets *
			datacache[level].associativity : number_of_sets;		
		datacache[level].size = cast(uint)(
				(sz * datacache[level].lineSize * line_partitions ) / (numthreads *1024));
		if (level == 0 && (a&0xF)==3) {
			// Halve the size for unified L1 caches
			datacache[level].size/=2;
		}
	}
}

// CPUID8000_0005 & 6
void getAMDcacheinfo()
{
	uint c5, c6, d6;
	asm {
		mov EAX, 0x8000_0005; // L1 cache
		cpuid;
		// EAX has L1_TLB_4M.
		// EBX has L1_TLB_4K
		// EDX has L1 instruction cache
		mov c5, ECX;
	}

	datacache[0].size = ( (c5>>24) & 0xFF);
	datacache[0].associativity = cast(ubyte)( (c5 >> 16) & 0xFF);
	datacache[0].lineSize = c5 & 0xFF;

	if (max_extended_cpuid >= 0x8000_0006) {
		// AMD K6-III or K6-2+ or later.
		ubyte numcores = 1;
		if (max_extended_cpuid >=0x8000_0008) {
			asm {
		    	mov EAX, 0x8000_0008;
		    	cpuid;
		    	mov numcores, CL;
		    }
		    ++numcores;
		    if (numcores>maxCores) maxCores = numcores;
		}
		asm {
			mov EAX, 0x8000_0006; // L2/L3 cache
			cpuid;
			mov c6, ECX; // L2 cache info
			mov d6, EDX; // L3 cache info
		}
	
		immutable ubyte [] assocmap = [ 0, 1, 2, 0, 4, 0, 8, 0, 16, 0, 32, 48, 64, 96, 128, 0xFF ];
		datacache[1].size = (c6>>16) & 0xFFFF;
		datacache[1].associativity = assocmap[(c6>>12)&0xF];
		datacache[1].lineSize = c6 & 0xFF;
		
		// The L3 cache value is TOTAL, not per core.
		datacache[2].size = ((d6>>18)*512)/numcores; // could be up to 2 * this, -1.
		datacache[2].associativity = assocmap[(d6>>12)&0xF];
		datacache[2].lineSize = d6 & 0xFF;
	}
}


void cpuidX86()
{
    char * venptr = vendorID.ptr;
	asm {
		mov EAX, 0;
		cpuid;
		mov max_cpuid, EAX;
		mov EAX, venptr;
		mov [EAX], EBX;
		mov [EAX + 4], EDX;
		mov [EAX + 8], ECX;
		mov EAX, 0x8000_0000;
		cpuid;
		mov max_extended_cpuid, EAX;
	}
	
	probablyIntel = vendorID == "GenuineIntel";
	probablyAMD = vendorID == "AuthenticAMD";
	uint a, b, c, d;
	uint apic = 0; // brand index, apic id
	asm {
		mov EAX, 1; // model, stepping
		cpuid;
		mov a, EAX;
		mov apic, EBX;
		mov miscfeatures, ECX;
		mov features, EDX;
	}
	amdfeatures = 0;
	amdmiscfeatures = 0;
	if (max_extended_cpuid >= 0x8000_0001) {
		asm {
			mov EAX, 0x8000_0001;
			cpuid;
			mov amdmiscfeatures, ECX;
			mov amdfeatures, EDX;
		}
	}
	// Try to detect fraudulent vendorIDs
	if (amd3dnow) probablyIntel = false;
	
	stepping = a & 0xF;
	uint fbase = (a >> 8) & 0xF;
	uint mbase = (a >> 4) & 0xF;
	family = ((fbase == 0xF) || (fbase == 0)) ? fbase + (a >> 20) & 0xFF : fbase;
	model = ((fbase == 0xF) || (fbase == 6 && probablyIntel) ) ?
	     mbase + ((a >> 12) & 0xF0) : mbase;
	     
	if (!probablyIntel && max_extended_cpuid >= 0x8000_0008) {
		// determine max number of cores for AMD
		asm {
			mov EAX, 0x8000_0008;
			cpuid;
			mov c, ECX;
		}
		uint apicsize = (c>>12) & 0xF;
		if (apicsize == 0) {
			// use legacy method
			if (hyperThreadingBit)	maxCores = c & 0xFF;
			else maxCores = 1;
		} else {
			// maxcores = 2^ apicsize
			maxCores = 1;
			while (apicsize) { maxCores<<=1; --apicsize; }
		}
	}
	
	if (max_extended_cpuid >= 0x8000_0004) {
		char *procptr = processorNameBuffer.ptr;
		asm {
			push ESI;
			mov ESI, procptr;
			mov EAX, 0x8000_0002;
			cpuid;
			mov [ESI], EAX;
			mov [ESI+4], EBX;
			mov [ESI+8], ECX;
			mov [ESI+12], EDX;
			mov EAX, 0x8000_0003;
			cpuid;
			mov [ESI+16], EAX;
			mov [ESI+20], EBX;
			mov [ESI+24], ECX;
			mov [ESI+28], EDX;
			mov EAX, 0x8000_0004;
			cpuid;
			mov [ESI+32], EAX;
			mov [ESI+36], EBX;
			mov [ESI+40], ECX;
			mov [ESI+44], EDX;
			pop ESI;			
		}
		// Intel P4 and PM pad at front with spaces.
		// Other CPUs pad at end with nulls.
		int start = 0, end = 0;
		while (processorNameBuffer[start] == ' ') { ++start; }
		while (processorNameBuffer[$-end-1] == 0) { ++end; }
		processorName = processorNameBuffer[start..$-end];
	} else {
		processorName[] = "Unknown CPU";
	}
	// Determine cache sizes
	
	// Intel docs specify that they return 0 for 0x8000_0005.
	// AMD docs do not specify the behaviour for 0004 and 0002.
	// Centaur/VIA and most other manufacturers use the AMD method,
	// except Cyrix MediaGX MMX Enhanced uses their OWN form of CPUID2!
	// NS Geode GX1 provides CyrixCPUID2 _and_ does the same wrong behaviour
	// for CPUID80000005. But Geode GX uses the AMD method
	
	// Deal with Geode GX1 - make it same as MediaGX MMX.
	if (max_extended_cpuid==0x8000_0005 && max_cpuid==2) {		
		max_extended_cpuid = 0x8000_0004;
	}
	// Therefore, we try the AMD method unless it's an Intel chip.
	// If we still have no info, try the Intel methods.
	datacache[0].size = 0;
	if (max_cpuid<2 || !probablyIntel) {
		if (max_extended_cpuid >= 0x8000_0005) {
			getAMDcacheinfo();
		} else if (probablyAMD) {		
			// According to AMDProcRecognitionAppNote, this means CPU
			// K5 model 0, or Am5x86 (model 4), or Am4x86DX4 (model 4)
			// Am5x86 has 16Kb 4-way unified data & code cache.
			datacache[0].size = 8;
			datacache[0].associativity = 4;
			datacache[0].lineSize = 32;		
		} else {
			// Some obscure CPU.
			// Values for Cyrix 6x86MX (family 6, model 0)
			datacache[0].size = 64;
			datacache[0].associativity = 4;
			datacache[0].lineSize = 32;		
		}
	}	
	if ((datacache[0].size == 0) && max_cpuid>=4) {
		getcacheinfoCPUID4();
	}
	if ((datacache[0].size == 0) && max_cpuid>=2) {		
		getcacheinfoCPUID2();
	}
	if (datacache[0].size == 0) {
		// Pentium, PMMX, late model 486, or an obscure CPU
		if (mmx) { // Pentium MMX. Also has 8kB code cache.
			datacache[0].size = 16;
			datacache[0].associativity = 4;
			datacache[0].lineSize = 32;		
		} else { // Pentium 1 (which also has 8kB code cache)
				 // or 486.
			// Cyrix 6x86: 16, 4way, 32 linesize
			datacache[0].size = 8;
			datacache[0].associativity = 2;
			datacache[0].lineSize = 32;
		}		
	}
	if (hyperThreadingBit) maxThreads = (apic>>>16) & 0xFF;
	else maxThreads = maxCores;
}

// Return true if the cpuid instruction is supported.
// BUG(WONTFIX): Returns false for Cyrix 6x86 and 6x86L. They will be treated as 486 machines.
bool hasCPUID()
{
	uint flags;
	asm {
		pushfd;
		pop EAX;
		mov flags, EAX;
		xor EAX, 0x0020_0000;
		push EAX;
		popfd;
		pushfd;
		pop EAX;
		xor flags, EAX;
	}
	return (flags & 0x0020_0000) !=0;
}

} else { // inline asm X86

	bool hasCPUID() { return false; }

	void cpuidX86()
	{
			datacache[0].size = 8;
			datacache[0].associativity = 2;
			datacache[0].lineSize = 32;		
	}	
}

// TODO: Implement this function with OS support
void cpuidPPC()
{
	enum :int  { PPC601, PPC603, PPC603E, PPC604,
	             PPC604E, PPC620, PPCG3, PPCG4, PPCG5 };

	// TODO:
	// asm { mfpvr; } returns the CPU version but unfortunately it can
	// only be used in kernel mode. So OS support is required.
	int cputype = PPC603;
	
	// 601 has a 8KB combined data & code L1 cache.
	uint sizes[] = [4, 8, 16, 16, 32, 32, 32, 32, 64];
	ubyte ways[] = [8, 2,  4,  4,  4,  8,  8,  8,  8];
	uint L2size[]= [0, 0,  0,  0,  0,  0,  0,  256,  512];
	uint L3size[]= [0, 0,  0,  0,  0,  0,  0,  2048,  0];
    
	datacache[0].size = sizes[cputype];
	datacache[0].associativity = ways[cputype]; 
	datacache[0].lineSize = (cputype==PPCG5)? 128 : 
		(cputype == PPC620 || cputype == PPCG3)? 64 : 32;
	datacache[1].size = L2size[cputype];
	datacache[2].size = L3size[cputype];
	datacache[1].lineSize = datacache[0].lineSize;
	datacache[2].lineSize = datacache[0].lineSize;
}

// TODO: Implement this function with OS support
void cpuidSparc()
{
	// UltaSparcIIi  : L1 = 16,  2way. L2 = 512, 4 way.
	// UltraSparcIII : L1 = 64,  4way. L2= 4096 or 8192.
	// UltraSparcIIIi: L1 = 64,  4way. L2= 1024, 4 way
	// UltraSparcIV  : L1 = 64,  4way. L2 = 16*1024.
	// UltraSparcIV+ : L1 = 64,  4way. L2 = 2048, L3=32*1024.
	// Sparc64V      : L1 = 128, 2way. L2 = 4096 4way.	
}


static this()
{
	if (hasCPUID()) {
		cpuidX86();
	} else {
		// it's a 386 or 486, or a Cyrix 6x86.
		//Probably still has an external cache.
	}
	if (datacache[0].size==0) {
			// Guess same as Pentium 1.
			datacache[0].size = 8;
			datacache[0].associativity = 2;
			datacache[0].lineSize = 32;		
	}
	numCacheLevels = 1;
	// And now fill up all the unused levels with full memory space.
	for (int i=1; i< datacache.length; ++i) {
		if (datacache[i].size==0) {
			// Set all remaining levels of cache equal to full address space.
			datacache[i].size = uint.max/1024;
			datacache[i].associativity = 1;
			datacache[i].lineSize = datacache[i-1].lineSize;
		} else numCacheLevels = i+1;
	}
}