view dmd/mtype.c @ 270:d9d5d59873d8 trunk

[svn r291] Fixed a bunch of the old Phobos tests to work with Tango. Branch statements now emit a new block after it. Fixed the _adSort runtime function had a bad signature. Added a missing dot prefix on compiler generated string tables for string switch. Fixed, PTRSIZE seems like it was wrong on 64bit, now it definitely gets set properly.
author lindquist
date Mon, 16 Jun 2008 16:01:19 +0200
parents 4d006f7b2ada
children 297690b5d4a5
line wrap: on
line source


// Compiler implementation of the D programming language
// Copyright (c) 1999-2008 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.

#define __USE_ISOC99 1		// so signbit() gets defined
#include <math.h>

#include <stdio.h>
#include <assert.h>
#include <float.h>

#ifdef __DMC__
#include <fp.h>
#endif

#if _MSC_VER
#include <malloc.h>
#include <complex>
#include <limits>
#elif __DMC__
#include <complex.h>
#else
//#define signbit 56
#endif

#if __APPLE__
#include <math.h>
static double zero = 0;
#elif __GNUC__
#include <math.h>
#include <bits/nan.h>
#include <bits/mathdef.h>
static double zero = 0;
#endif

#include "mem.h"

#include "dsymbol.h"
#include "mtype.h"
#include "scope.h"
#include "init.h"
#include "expression.h"
#include "attrib.h"
#include "declaration.h"
#include "template.h"
#include "id.h"
#include "enum.h"
#include "import.h"
#include "aggregate.h"
#include "hdrgen.h"

FuncDeclaration *hasThis(Scope *sc);


#define LOGDOTEXP	0	// log ::dotExp()
#define LOGDEFAULTINIT	0	// log ::defaultInit()

// Allow implicit conversion of T[] to T*
#define IMPLICIT_ARRAY_TO_PTR	global.params.useDeprecated

/* These have default values for 32 bit code, they get
 * adjusted for 64 bit code.
 */

int PTRSIZE = 4;
#if IN_LLVM
int REALSIZE = 8;
int REALPAD = 0;
#elif TARGET_LINUX
int REALSIZE = 12;
int REALPAD = 2;
#else
int REALSIZE = 10;
int REALPAD = 0;
#endif
int Tsize_t = Tuns32;
int Tptrdiff_t = Tint32;

/***************************** Type *****************************/

ClassDeclaration *Type::typeinfo;
ClassDeclaration *Type::typeinfoclass;
ClassDeclaration *Type::typeinfointerface;
ClassDeclaration *Type::typeinfostruct;
ClassDeclaration *Type::typeinfotypedef;
ClassDeclaration *Type::typeinfopointer;
ClassDeclaration *Type::typeinfoarray;
ClassDeclaration *Type::typeinfostaticarray;
ClassDeclaration *Type::typeinfoassociativearray;
ClassDeclaration *Type::typeinfoenum;
ClassDeclaration *Type::typeinfofunction;
ClassDeclaration *Type::typeinfodelegate;
ClassDeclaration *Type::typeinfotypelist;

Type *Type::tvoidptr;
Type *Type::basic[TMAX];
unsigned char Type::mangleChar[TMAX];
StringTable Type::stringtable;


Type::Type(TY ty, Type *next)
{
    this->ty = ty;
    this->mod = 0;
    this->next = next;
    this->deco = NULL;
#if V2
    this->cto = NULL;
    this->ito = NULL;
#endif
    this->pto = NULL;
    this->rto = NULL;
    this->arrayof = NULL;
    this->vtinfo = NULL;
    this->ctype = NULL;
}

Type *Type::syntaxCopy()
{
    print();
    fprintf(stdmsg, "ty = %d\n", ty);
    assert(0);
    return this;
}

int Type::equals(Object *o)
{   Type *t;

    t = (Type *)o;
    //printf("Type::equals(%s, %s)\n", toChars(), t->toChars());
    if (this == o ||
	(t && deco == t->deco) &&		// deco strings are unique
	 deco != NULL)				// and semantic() has been run
    {
	//printf("deco = '%s', t->deco = '%s'\n", deco, t->deco);
	return 1;
    }
    //if (deco && t && t->deco) printf("deco = '%s', t->deco = '%s'\n", deco, t->deco);
    return 0;
}

char Type::needThisPrefix()
{
    return 'M';		// name mangling prefix for functions needing 'this'
}

void Type::init()
{   int i;
    int j;

    Lexer::initKeywords();

    mangleChar[Tarray] = 'A';
    mangleChar[Tsarray] = 'G';
    mangleChar[Taarray] = 'H';
    mangleChar[Tpointer] = 'P';
    mangleChar[Treference] = 'R';
    mangleChar[Tfunction] = 'F';
    mangleChar[Tident] = 'I';
    mangleChar[Tclass] = 'C';
    mangleChar[Tstruct] = 'S';
    mangleChar[Tenum] = 'E';
    mangleChar[Ttypedef] = 'T';
    mangleChar[Tdelegate] = 'D';

    mangleChar[Tnone] = 'n';
    mangleChar[Tvoid] = 'v';
    mangleChar[Tint8] = 'g';
    mangleChar[Tuns8] = 'h';
    mangleChar[Tint16] = 's';
    mangleChar[Tuns16] = 't';
    mangleChar[Tint32] = 'i';
    mangleChar[Tuns32] = 'k';
    mangleChar[Tint64] = 'l';
    mangleChar[Tuns64] = 'm';
    mangleChar[Tfloat32] = 'f';
    mangleChar[Tfloat64] = 'd';
    mangleChar[Tfloat80] = 'e';

    mangleChar[Timaginary32] = 'o';
    mangleChar[Timaginary64] = 'p';
    mangleChar[Timaginary80] = 'j';
    mangleChar[Tcomplex32] = 'q';
    mangleChar[Tcomplex64] = 'r';
    mangleChar[Tcomplex80] = 'c';

    mangleChar[Tbool] = 'b';
    mangleChar[Tascii] = 'a';
    mangleChar[Twchar] = 'u';
    mangleChar[Tdchar] = 'w';

    mangleChar[Tbit] = '@';
    mangleChar[Tinstance] = '@';
    mangleChar[Terror] = '@';
    mangleChar[Ttypeof] = '@';
    mangleChar[Ttuple] = 'B';
    mangleChar[Tslice] = '@';

    for (i = 0; i < TMAX; i++)
    {	if (!mangleChar[i])
	    fprintf(stdmsg, "ty = %d\n", i);
	assert(mangleChar[i]);
    }

    // Set basic types
    static TY basetab[] =
	{ Tvoid, Tint8, Tuns8, Tint16, Tuns16, Tint32, Tuns32, Tint64, Tuns64,
	  Tfloat32, Tfloat64, Tfloat80,
	  Timaginary32, Timaginary64, Timaginary80,
	  Tcomplex32, Tcomplex64, Tcomplex80,
	  Tbit, Tbool,
	  Tascii, Twchar, Tdchar };

    for (i = 0; i < sizeof(basetab) / sizeof(basetab[0]); i++)
	basic[basetab[i]] = new TypeBasic(basetab[i]);
    basic[Terror] = basic[Tint32];

    tvoidptr = tvoid->pointerTo();

    // set size_t / ptrdiff_t types and pointer size
    if (global.params.is64bit)
    {
    Tsize_t = Tuns64;
    Tptrdiff_t = Tint64;
    PTRSIZE = 8;
    }
    else
    {
    Tsize_t = Tuns32;
    Tptrdiff_t = Tint32;
    PTRSIZE = 4;
    }

    // set real size and padding
    if (global.params.useFP80)
    {
    REALSIZE = 12;
    REALPAD = 2;
    }
    else
    {
    REALSIZE = 8;
    REALPAD = 0;
    }
}

d_uns64 Type::size()
{
    return size(0);
}

d_uns64 Type::size(Loc loc)
{
    error(loc, "no size for type %s", toChars());
    return 1;
}

unsigned Type::alignsize()
{
    return size(0);
}

Type *Type::semantic(Loc loc, Scope *sc)
{
    if (next)
	next = next->semantic(loc,sc);
    return merge();
}

Type *Type::pointerTo()
{
    if (!pto)
    {	Type *t;

	t = new TypePointer(this);
	pto = t->merge();
    }
    return pto;
}

Type *Type::referenceTo()
{
    if (!rto)
    {	Type *t;

	t = new TypeReference(this);
	rto = t->merge();
    }
    return rto;
}

Type *Type::arrayOf()
{
    if (!arrayof)
    {	Type *t;

	t = new TypeDArray(this);
	arrayof = t->merge();
    }
    return arrayof;
}

Dsymbol *Type::toDsymbol(Scope *sc)
{
    return NULL;
}

/*******************************
 * If this is a shell around another type,
 * get that other type.
 */

Type *Type::toBasetype()
{
    return this;
}

/********************************
 * Name mangling.
 */

void Type::toDecoBuffer(OutBuffer *buf)
{
    buf->writeByte(mangleChar[ty]);
    if (next)
    {
	assert(next != this);
	//printf("this = %p, ty = %d, next = %p, ty = %d\n", this, this->ty, next, next->ty);
	next->toDecoBuffer(buf);
    }
}

/********************************
 * For pretty-printing a type.
 */

char *Type::toChars()
{   OutBuffer *buf;
    HdrGenState hgs;

    buf = new OutBuffer();
    toCBuffer(buf, NULL, &hgs);
    return buf->toChars();
}

void Type::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
    toCBuffer2(buf, hgs, 0);
    if (ident)
    {	buf->writeByte(' ');
	buf->writestring(ident->toChars());
    }
}

void Type::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(toChars());
}

void Type::toCBuffer3(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	char *p;

	switch (this->mod)
	{
	    case 0:
		toCBuffer2(buf, hgs, this->mod);
		break;
	    case MODconst:
		p = "const(";
		goto L1;
	    case MODinvariant:
		p = "invariant(";
	    L1:	buf->writestring(p);
		toCBuffer2(buf, hgs, this->mod);
		buf->writeByte(')');
		break;
	    default:
		assert(0);
	}
    }
}


/************************************
 */

Type *Type::merge()
{   Type *t;

    //printf("merge(%s)\n", toChars());
    t = this;
    assert(t);
    if (!deco)
    {
	OutBuffer buf;
	StringValue *sv;

	if (next)
	    next = next->merge();
	toDecoBuffer(&buf);
	sv = stringtable.update((char *)buf.data, buf.offset);
	if (sv->ptrvalue)
	{   t = (Type *) sv->ptrvalue;
	    assert(t->deco);
	    //printf("old value, deco = '%s' %p\n", t->deco, t->deco);
	}
	else
	{
	    sv->ptrvalue = this;
	    deco = sv->lstring.string;
	    //printf("new value, deco = '%s' %p\n", t->deco, t->deco);
	}
    }
    return t;
}

int Type::isbit()
{
    return FALSE;
}

int Type::isintegral()
{
    return FALSE;
}

int Type::isfloating()
{
    return FALSE;
}

int Type::isreal()
{
    return FALSE;
}

int Type::isimaginary()
{
    return FALSE;
}

int Type::iscomplex()
{
    return FALSE;
}

int Type::isscalar()
{
    return FALSE;
}

int Type::isunsigned()
{
    return FALSE;
}

ClassDeclaration *Type::isClassHandle()
{
    return NULL;
}

int Type::isauto()
{
    return FALSE;
}

int Type::isString()
{
    return FALSE;
}

int Type::checkBoolean()
{
    return isscalar();
}

/*********************************
 * Check type to see if it is based on a deprecated symbol.
 */

void Type::checkDeprecated(Loc loc, Scope *sc)
{
    Type *t;
    Dsymbol *s;

    for (t = this; t; t = t->next)
    {
	s = t->toDsymbol(sc);
	if (s)
	    s->checkDeprecated(loc, sc);
    }
}


Expression *Type::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("Type::defaultInit() '%s'\n", toChars());
#endif
    return NULL;
}

int Type::isZeroInit()
{
    return 0;		// assume not
}

int Type::isBaseOf(Type *t, int *poffset)
{
    return 0;		// assume not
}

/********************************
 * Determine if 'this' can be implicitly converted
 * to type 'to'.
 * Returns:
 *	0	can't convert
 *	1	can convert using implicit conversions
 *	2	this and to are the same type
 */

MATCH Type::implicitConvTo(Type *to)
{
    //printf("Type::implicitConvTo(this=%p, to=%p)\n", this, to);
    //printf("\tthis->next=%p, to->next=%p\n", this->next, to->next);
    if (this == to)
	return MATCHexact;
//    if (to->ty == Tvoid)
//	return 1;
    return MATCHnomatch;
}

Expression *Type::getProperty(Loc loc, Identifier *ident)
{   Expression *e;

#if LOGDOTEXP
    printf("Type::getProperty(type = '%s', ident = '%s')\n", toChars(), ident->toChars());
#endif
    if (ident == Id::__sizeof)
    {
	e = new IntegerExp(loc, size(loc), Type::tsize_t);
    }
    else if (ident == Id::size)
    {
	error(loc, ".size property should be replaced with .sizeof");
	e = new IntegerExp(loc, size(loc), Type::tsize_t);
    }
    else if (ident == Id::alignof)
    {
	e = new IntegerExp(loc, alignsize(), Type::tsize_t);
    }
    else if (ident == Id::typeinfo)
    {
	if (!global.params.useDeprecated)
	    error(loc, ".typeinfo deprecated, use typeid(type)");
	e = getTypeInfo(NULL);
    }
    else if (ident == Id::init)
    {
	if (ty == Tvoid)
	    error(loc, "void does not have an initializer");
	e = defaultInit(loc);
    }
    else if (ident == Id::mangleof)
    {
	assert(deco);
	e = new StringExp(loc, deco, strlen(deco), 'c');
	Scope sc;
	e = e->semantic(&sc);
    }
    else if (ident == Id::stringof)
    {	char *s = toChars();
	e = new StringExp(loc, s, strlen(s), 'c');
	Scope sc;
	e = e->semantic(&sc);
    }
    else
    {
	error(loc, "no property '%s' for type '%s'", ident->toChars(), toChars());
	e = new IntegerExp(loc, 1, Type::tint32);
    }
    return e;
}

Expression *Type::dotExp(Scope *sc, Expression *e, Identifier *ident)
{   VarDeclaration *v = NULL;

#if LOGDOTEXP
    printf("Type::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (e->op == TOKdotvar)
    {
	DotVarExp *dv = (DotVarExp *)e;
	v = dv->var->isVarDeclaration();
    }
    else if (e->op == TOKvar)
    {
	VarExp *ve = (VarExp *)e;
	v = ve->var->isVarDeclaration();
    }
    if (v)
    {
	if (ident == Id::offset)
	{
	    if (!global.params.useDeprecated)
		error(e->loc, ".offset deprecated, use .offsetof");
	    goto Loffset;
	}
	else if (ident == Id::offsetof)
	{
	  Loffset:
	    if (v->storage_class & STCfield)
	    {
		e = new IntegerExp(e->loc, v->offset, Type::tsize_t);
		return e;
	    }
	}
	else if (ident == Id::init)
	{
#if 0
	    if (v->init)
	    {
		if (v->init->isVoidInitializer())
		    error(e->loc, "%s.init is void", v->toChars());
		else
		{   Loc loc = e->loc;
		    e = v->init->toExpression();
		    if (e->op == TOKassign || e->op == TOKconstruct)
		    {
			e = ((AssignExp *)e)->e2;

			/* Take care of case where we used a 0
			 * to initialize the struct.
			 */
			if (e->type == Type::tint32 &&
			    e->isBool(0) &&
			    v->type->toBasetype()->ty == Tstruct)
			{
			    e = v->type->defaultInit(loc);
			}
		    }
		    e = e->optimize(WANTvalue | WANTinterpret);
//		    if (!e->isConst())
//			error(loc, ".init cannot be evaluated at compile time");
		}
		return e;
	    }
#endif
	    Expression *ex = defaultInit(e->loc);
	    return ex;
	}
    }
    if (ident == Id::typeinfo)
    {
	if (!global.params.useDeprecated)
	    error(e->loc, ".typeinfo deprecated, use typeid(type)");
	e = getTypeInfo(sc);
	return e;
    }
    if (ident == Id::stringof)
    {	char *s = e->toChars();
	e = new StringExp(e->loc, s, strlen(s), 'c');
	Scope sc;
	e = e->semantic(&sc);
	return e;
    }
    return getProperty(e->loc, ident);
}

unsigned Type::memalign(unsigned salign)
{
    return salign;
}

void Type::error(Loc loc, const char *format, ...)
{
    va_list ap;
    va_start(ap, format);
    ::verror(loc, format, ap);
    va_end( ap );
}

Identifier *Type::getTypeInfoIdent(int internal)
{
    // _init_10TypeInfo_%s
    OutBuffer buf;
    Identifier *id;
    char *name;
    int len;

    //toTypeInfoBuffer(&buf);
    if (internal)
    {	buf.writeByte(mangleChar[ty]);
	if (ty == Tarray)
	    buf.writeByte(mangleChar[next->ty]);
    }
    else
	toDecoBuffer(&buf);
    len = buf.offset;
    name = (char *)alloca(19 + sizeof(len) * 3 + len + 1);
    buf.writeByte(0);
    sprintf(name, "_D%dTypeInfo_%s6__initZ", 9 + len, buf.data);
    if (global.params.isWindows)
	name++;			// C mangling will add it back in
    //printf("name = %s\n", name);
    id = Lexer::idPool(name);
    return id;
}

TypeBasic *Type::isTypeBasic()
{
    return NULL;
}


void Type::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    Type *t;

    t = semantic(loc, sc);
    *pt = t;
    *pe = NULL;
    *ps = NULL;
}

/*******************************
 * If one of the subtypes of this type is a TypeIdentifier,
 * i.e. it's an unresolved type, return that type.
 */

Type *Type::reliesOnTident()
{
    if (!next)
	return NULL;
    else
	return next->reliesOnTident();
}

/********************************
 * We've mistakenly parsed this as a type.
 * Redo it as an Expression.
 * NULL if cannot.
 */

Expression *Type::toExpression()
{
    return NULL;
}

/***************************************
 * Return !=0 if type has pointers that need to
 * be scanned by the GC during a collection cycle.
 */

int Type::hasPointers()
{
    return FALSE;
}

/* ============================= TypeBasic =========================== */

TypeBasic::TypeBasic(TY ty)
	: Type(ty, NULL)
{   char *c;
    char *d;
    unsigned flags;

#define TFLAGSintegral	1
#define TFLAGSfloating	2
#define TFLAGSunsigned	4
#define TFLAGSreal	8
#define TFLAGSimaginary	0x10
#define TFLAGScomplex	0x20

    flags = 0;
    switch (ty)
    {
	case Tvoid:	d = Token::toChars(TOKvoid);
			c = "void";
			break;

	case Tint8:	d = Token::toChars(TOKint8);
			c = "byte";
			flags |= TFLAGSintegral;
			break;

	case Tuns8:	d = Token::toChars(TOKuns8);
			c = "ubyte";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tint16:	d = Token::toChars(TOKint16);
			c = "short";
			flags |= TFLAGSintegral;
			break;

	case Tuns16:	d = Token::toChars(TOKuns16);
			c = "ushort";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tint32:	d = Token::toChars(TOKint32);
			c = "int";
			flags |= TFLAGSintegral;
			break;

	case Tuns32:	d = Token::toChars(TOKuns32);
			c = "uint";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tfloat32:	d = Token::toChars(TOKfloat32);
			c = "float";
			flags |= TFLAGSfloating | TFLAGSreal;
			break;

	case Tint64:	d = Token::toChars(TOKint64);
			c = "long";
			flags |= TFLAGSintegral;
			break;

	case Tuns64:	d = Token::toChars(TOKuns64);
			c = "ulong";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tfloat64:	d = Token::toChars(TOKfloat64);
			c = "double";
			flags |= TFLAGSfloating | TFLAGSreal;
			break;

	case Tfloat80:	d = Token::toChars(TOKfloat80);
			c = "real";
			flags |= TFLAGSfloating | TFLAGSreal;
			break;

	case Timaginary32: d = Token::toChars(TOKimaginary32);
			c = "ifloat";
			flags |= TFLAGSfloating | TFLAGSimaginary;
			break;

	case Timaginary64: d = Token::toChars(TOKimaginary64);
			c = "idouble";
			flags |= TFLAGSfloating | TFLAGSimaginary;
			break;

	case Timaginary80: d = Token::toChars(TOKimaginary80);
			c = "ireal";
			flags |= TFLAGSfloating | TFLAGSimaginary;
			break;

	case Tcomplex32: d = Token::toChars(TOKcomplex32);
			c = "cfloat";
			flags |= TFLAGSfloating | TFLAGScomplex;
			break;

	case Tcomplex64: d = Token::toChars(TOKcomplex64);
			c = "cdouble";
			flags |= TFLAGSfloating | TFLAGScomplex;
			break;

	case Tcomplex80: d = Token::toChars(TOKcomplex80);
			c = "creal";
			flags |= TFLAGSfloating | TFLAGScomplex;
			break;


	case Tbit:	d = Token::toChars(TOKbit);
			c = "bit";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tbool:	d = "bool";
			c = d;
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tascii:	d = Token::toChars(TOKchar);
			c = "char";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Twchar:	d = Token::toChars(TOKwchar);
			c = "wchar";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tdchar:	d = Token::toChars(TOKdchar);
			c = "dchar";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	default:	assert(0);
    }
    this->dstring = d;
    this->cstring = c;
    this->flags = flags;
    merge();
}

Type *TypeBasic::syntaxCopy()
{
    // No semantic analysis done on basic types, no need to copy
    return this;
}


char *TypeBasic::toChars()
{
    return dstring;
}

void TypeBasic::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypeBasic::toCBuffer2(mod = %d, this->mod = %d)\n", mod, this->mod);
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(dstring);
}

d_uns64 TypeBasic::size(Loc loc)
{   unsigned size;

    //printf("TypeBasic::size()\n");
    switch (ty)
    {
	case Tint8:
	case Tuns8:	size = 1;	break;
	case Tint16:
	case Tuns16:	size = 2;	break;
	case Tint32:
	case Tuns32:
	case Tfloat32:
	case Timaginary32:
			size = 4;	break;
	case Tint64:
	case Tuns64:
	case Tfloat64:
	case Timaginary64:
			size = 8;	break;
	case Tfloat80:
	case Timaginary80:
			size = REALSIZE;	break;
	case Tcomplex32:
			size = 8;		break;
	case Tcomplex64:
			size = 16;		break;
	case Tcomplex80:
			size = REALSIZE * 2;	break;

	case Tvoid:
	    //size = Type::size();	// error message
	    size = 1;
	    break;

	case Tbit:	size = 1;		break;
	case Tbool:	size = 1;		break;
	case Tascii:	size = 1;		break;
	case Twchar:	size = 2;		break;
	case Tdchar:	size = 4;		break;

	default:
	    assert(0);
	    break;
    }
    //printf("TypeBasic::size() = %d\n", size);
    return size;
}

unsigned TypeBasic::alignsize()
{   unsigned sz;

    switch (ty)
    {
	case Tfloat80:
	case Timaginary80:
	case Tcomplex80:
	    sz = REALSIZE;
	    break;

	default:
	    sz = size(0);
	    break;
    }
    return sz;
}


Expression *TypeBasic::getProperty(Loc loc, Identifier *ident)
{
    Expression *e;
    d_int64 ivalue;
#ifdef IN_GCC
    real_t    fvalue;
#else
    d_float80 fvalue;
#endif

    //printf("TypeBasic::getProperty('%s')\n", ident->toChars());
    if (ident == Id::max)
    {
	switch (ty)
	{
	    case Tint8:		ivalue = 0x7F;		goto Livalue;
	    case Tuns8:		ivalue = 0xFF;		goto Livalue;
	    case Tint16:	ivalue = 0x7FFFUL;	goto Livalue;
	    case Tuns16:	ivalue = 0xFFFFUL;	goto Livalue;
	    case Tint32:	ivalue = 0x7FFFFFFFUL;	goto Livalue;
	    case Tuns32:	ivalue = 0xFFFFFFFFUL;	goto Livalue;
	    case Tint64:	ivalue = 0x7FFFFFFFFFFFFFFFLL;	goto Livalue;
	    case Tuns64:	ivalue = 0xFFFFFFFFFFFFFFFFULL;	goto Livalue;
	    case Tbit:		ivalue = 1;		goto Livalue;
	    case Tbool:		ivalue = 1;		goto Livalue;
	    case Tchar:		ivalue = 0xFF;		goto Livalue;
	    case Twchar:	ivalue = 0xFFFFUL;	goto Livalue;
	    case Tdchar:	ivalue = 0x10FFFFUL;	goto Livalue;

	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	fvalue = FLT_MAX;	goto Lfvalue;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	fvalue = DBL_MAX;	goto Lfvalue;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	fvalue = LDBL_MAX;	goto Lfvalue;
	}
    }
    else if (ident == Id::min)
    {
	switch (ty)
	{
	    case Tint8:		ivalue = -128;		goto Livalue;
	    case Tuns8:		ivalue = 0;		goto Livalue;
	    case Tint16:	ivalue = -32768;	goto Livalue;
	    case Tuns16:	ivalue = 0;		goto Livalue;
	    case Tint32:	ivalue = -2147483647L - 1;	goto Livalue;
	    case Tuns32:	ivalue = 0;			goto Livalue;
	    case Tint64:	ivalue = (-9223372036854775807LL-1LL);	goto Livalue;
	    case Tuns64:	ivalue = 0;		goto Livalue;
	    case Tbit:		ivalue = 0;		goto Livalue;
	    case Tbool:		ivalue = 0;		goto Livalue;
	    case Tchar:		ivalue = 0;		goto Livalue;
	    case Twchar:	ivalue = 0;		goto Livalue;
	    case Tdchar:	ivalue = 0;		goto Livalue;

	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	fvalue = FLT_MIN;	goto Lfvalue;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	fvalue = DBL_MIN;	goto Lfvalue;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	fvalue = LDBL_MIN;	goto Lfvalue;
	}
    }
    else if (ident == Id::nan)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Tcomplex64:
	    case Tcomplex80:
	    case Timaginary32:
	    case Timaginary64:
	    case Timaginary80:
	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
	    {
#if IN_GCC
		// mode doesn't matter, will be converted in RealExp anyway
		fvalue = real_t::getnan(real_t::LongDouble);
#elif __GNUC__
		// gcc nan's have the sign bit set by default, so turn it off
		// Need the volatile to prevent gcc from doing incorrect
		// constant folding.
		volatile d_float80 foo;
		foo = NAN;
		if (signbit(foo))	// signbit sometimes, not always, set
		    foo = -foo;		// turn off sign bit
		fvalue = foo;
#elif _MSC_VER
		unsigned long nan[2]= { 0xFFFFFFFF, 0x7FFFFFFF };
		fvalue = *(double*)nan;
#else
		fvalue = NAN;
#endif
		goto Lfvalue;
	    }
	}
    }
    else if (ident == Id::infinity)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Tcomplex64:
	    case Tcomplex80:
	    case Timaginary32:
	    case Timaginary64:
	    case Timaginary80:
	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
#if IN_GCC
		fvalue = real_t::getinfinity();
#elif __GNUC__
		fvalue = 1 / zero;
#elif _MSC_VER
		fvalue = std::numeric_limits<long double>::infinity();
#else
		fvalue = INFINITY;
#endif
		goto Lfvalue;
	}
    }
    else if (ident == Id::dig)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_DIG;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_DIG;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_DIG;	goto Lint;
	}
    }
    else if (ident == Id::epsilon)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	fvalue = FLT_EPSILON;	goto Lfvalue;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	fvalue = DBL_EPSILON;	goto Lfvalue;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	fvalue = LDBL_EPSILON;	goto Lfvalue;
	}
    }
    else if (ident == Id::mant_dig)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MANT_DIG;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MANT_DIG;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MANT_DIG; goto Lint;
	}
    }
    else if (ident == Id::max_10_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MAX_10_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MAX_10_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MAX_10_EXP;	goto Lint;
	}
    }
    else if (ident == Id::max_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MAX_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MAX_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MAX_EXP;	goto Lint;
	}
    }
    else if (ident == Id::min_10_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MIN_10_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MIN_10_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MIN_10_EXP;	goto Lint;
	}
    }
    else if (ident == Id::min_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MIN_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MIN_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MIN_EXP;	goto Lint;
	}
    }

Ldefault:
    return Type::getProperty(loc, ident);

Livalue:
    e = new IntegerExp(loc, ivalue, this);
    return e;

Lfvalue:
    if (isreal() || isimaginary())
	e = new RealExp(loc, fvalue, this);
    else
    {
	complex_t cvalue;

#if __DMC__
	//((real_t *)&cvalue)[0] = fvalue;
	//((real_t *)&cvalue)[1] = fvalue;
	cvalue = fvalue + fvalue * I;
#else
	cvalue.re = fvalue;
	cvalue.im = fvalue;
#endif
	//for (int i = 0; i < 20; i++)
	//    printf("%02x ", ((unsigned char *)&cvalue)[i]);
	//printf("\n");
	e = new ComplexExp(loc, cvalue, this);
    }
    return e;

Lint:
    e = new IntegerExp(loc, ivalue, Type::tint32);
    return e;
}

Expression *TypeBasic::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeBasic::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    Type *t;

    if (ident == Id::re)
    {
	switch (ty)
	{
	    case Tcomplex32:	t = tfloat32;		goto L1;
	    case Tcomplex64:	t = tfloat64;		goto L1;
	    case Tcomplex80:	t = tfloat80;		goto L1;
	    L1:
		e = e->castTo(sc, t);
		break;

	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
		break;

	    case Timaginary32:	t = tfloat32;		goto L2;
	    case Timaginary64:	t = tfloat64;		goto L2;
	    case Timaginary80:	t = tfloat80;		goto L2;
	    L2:
		e = new RealExp(0, 0.0, t);
		break;

	    default:
		return Type::getProperty(e->loc, ident);
	}
    }
    else if (ident == Id::im)
    {	Type *t2;

	switch (ty)
	{
	    case Tcomplex32:	t = timaginary32;	t2 = tfloat32;	goto L3;
	    case Tcomplex64:	t = timaginary64;	t2 = tfloat64;	goto L3;
	    case Tcomplex80:	t = timaginary80;	t2 = tfloat80;	goto L3;
	    L3:
		e = e->castTo(sc, t);
		e->type = t2;
		break;

	    case Timaginary32:	t = tfloat32;	goto L4;
	    case Timaginary64:	t = tfloat64;	goto L4;
	    case Timaginary80:	t = tfloat80;	goto L4;
	    L4:
		e->type = t;
		break;

	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
		e = new RealExp(0, 0.0, this);
		break;

	    default:
		return Type::getProperty(e->loc, ident);
	}
    }
    else
    {
	return Type::dotExp(sc, e, ident);
    }
    return e;
}

Expression *TypeBasic::defaultInit(Loc loc)
{   integer_t value = 0;

#if LOGDEFAULTINIT
    printf("TypeBasic::defaultInit() '%s'\n", toChars());
#endif
    switch (ty)
    {
	case Tchar:
	    value = 0xFF;
	    break;

	case Twchar:
	case Tdchar:
	    value = 0xFFFF;
	    break;

	case Timaginary32:
	case Timaginary64:
	case Timaginary80:
	case Tfloat32:
	case Tfloat64:
	case Tfloat80:
	case Tcomplex32:
	case Tcomplex64:
	case Tcomplex80:
	    return getProperty(loc, Id::nan);
    }
    return new IntegerExp(loc, value, this);
}

int TypeBasic::isZeroInit()
{
    switch (ty)
    {
	case Tchar:
	case Twchar:
	case Tdchar:
	case Timaginary32:
	case Timaginary64:
	case Timaginary80:
	case Tfloat32:
	case Tfloat64:
	case Tfloat80:
	case Tcomplex32:
	case Tcomplex64:
	case Tcomplex80:
	    return 0;		// no
    }
    return 1;			// yes
}

int TypeBasic::isbit()
{
    return (ty == Tbit);
}

int TypeBasic::isintegral()
{
    //printf("TypeBasic::isintegral('%s') x%x\n", toChars(), flags);
    return flags & TFLAGSintegral;
}

int TypeBasic::isfloating()
{
    return flags & TFLAGSfloating;
}

int TypeBasic::isreal()
{
    return flags & TFLAGSreal;
}

int TypeBasic::isimaginary()
{
    return flags & TFLAGSimaginary;
}

int TypeBasic::iscomplex()
{
    return flags & TFLAGScomplex;
}

int TypeBasic::isunsigned()
{
    return flags & TFLAGSunsigned;
}

int TypeBasic::isscalar()
{
    return flags & (TFLAGSintegral | TFLAGSfloating);
}

MATCH TypeBasic::implicitConvTo(Type *to)
{
    //printf("TypeBasic::implicitConvTo(%s) from %s\n", to->toChars(), toChars());
    if (this == to)
	return MATCHexact;

    if (ty == Tvoid || to->ty == Tvoid)
	return MATCHnomatch;
    if (1 || global.params.Dversion == 1)
    {
	if (to->ty == Tbool)
	    return MATCHnomatch;
    }
    else
    {
	if (ty == Tbool || to->ty == Tbool)
	    return MATCHnomatch;
    }
    if (!to->isTypeBasic())
	return MATCHnomatch;

    TypeBasic *tob = (TypeBasic *)to;
    if (flags & TFLAGSintegral)
    {
	// Disallow implicit conversion of integers to imaginary or complex
	if (tob->flags & (TFLAGSimaginary | TFLAGScomplex))
	    return MATCHnomatch;

	// If converting to integral
	if (0 && global.params.Dversion > 1 && tob->flags & TFLAGSintegral)
	{   d_uns64 sz = size(0);
	    d_uns64 tosz = tob->size(0);

	    /* Can't convert to smaller size or, if same size, change sign
	     */
	    if (sz > tosz)
		return MATCHnomatch;

	    /*if (sz == tosz && (flags ^ tob->flags) & TFLAGSunsigned)
		return MATCHnomatch;*/
	}
    }
    else if (flags & TFLAGSfloating)
    {
	// Disallow implicit conversion of floating point to integer
	if (tob->flags & TFLAGSintegral)
	    return MATCHnomatch;

	assert(tob->flags & TFLAGSfloating);

	// Disallow implicit conversion from complex to non-complex
	if (flags & TFLAGScomplex && !(tob->flags & TFLAGScomplex))
	    return MATCHnomatch;

	// Disallow implicit conversion of real or imaginary to complex
	if (flags & (TFLAGSreal | TFLAGSimaginary) &&
	    tob->flags & TFLAGScomplex)
	    return MATCHnomatch;

	// Disallow implicit conversion to-from real and imaginary
	if ((flags & (TFLAGSreal | TFLAGSimaginary)) !=
	    (tob->flags & (TFLAGSreal | TFLAGSimaginary)))
	    return MATCHnomatch;
    }
    return MATCHconvert;
}

TypeBasic *TypeBasic::isTypeBasic()
{
    return (TypeBasic *)this;
}

/***************************** TypeArray *****************************/

TypeArray::TypeArray(TY ty, Type *next)
    : Type(ty, next)
{
}

Expression *TypeArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
    Type *n = this->next->toBasetype();		// uncover any typedef's

#if LOGDOTEXP
    printf("TypeArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::reverse && (n->ty == Tchar || n->ty == Twchar))
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;
	char *nm;
	static char *name[2] = { "_adReverseChar", "_adReverseWchar" };

	nm = name[n->ty == Twchar];
	fd = FuncDeclaration::genCfunc(Type::tvoid->arrayOf(), nm);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	arguments->push(e);
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::sort && (n->ty == Tchar || n->ty == Twchar))
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;
	char *nm;
	static char *name[2] = { "_adSortChar", "_adSortWchar" };

	nm = name[n->ty == Twchar];
	fd = FuncDeclaration::genCfunc(Type::tvoid->arrayOf(), nm);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	arguments->push(e);
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::reverse || ident == Id::dup)
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;
	int size = next->size(e->loc);
	int dup;

	assert(size);
	dup = (ident == Id::dup);
	fd = FuncDeclaration::genCfunc(Type::tvoid->arrayOf(), dup ? Id::adDup : Id::adReverse);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	if (dup)
	    arguments->push(getTypeInfo(sc));
	arguments->push(e);
	if (!dup)
	    arguments->push(new IntegerExp(0, size, Type::tint32));
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::sort)
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;

	fd = FuncDeclaration::genCfunc(Type::tvoid->arrayOf(),
		(char*)(n->ty == Tbit ? "_adSortBit" : "_adSort"));
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	arguments->push(e);
	if (next->ty != Tbit)
	    arguments->push(n->ty == Tsarray
			? n->getTypeInfo(sc)	// don't convert to dynamic array
			: n->getInternalTypeInfo(sc));
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else
    {
	e = Type::dotExp(sc, e, ident);
    }
    return e;
}


/***************************** TypeSArray *****************************/

TypeSArray::TypeSArray(Type *t, Expression *dim)
    : TypeArray(Tsarray, t)
{
    //printf("TypeSArray(%s)\n", dim->toChars());
    this->dim = dim;
}

Type *TypeSArray::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    Expression *e = dim->syntaxCopy();
    t = new TypeSArray(t, e);
    return t;
}

d_uns64 TypeSArray::size(Loc loc)
{   integer_t sz;

    if (!dim)
	return Type::size(loc);
    sz = dim->toInteger();
    if (next->toBasetype()->ty == Tbit)		// if array of bits
    {
	if (sz + 31 < sz)
	    goto Loverflow;
	sz = ((sz + 31) & ~31) / 8;	// size in bytes, rounded up to 32 bit dwords
    }
    else
    {	integer_t n, n2;

	n = next->size();
	n2 = n * sz;
	if (n && (n2 / n) != sz)
	    goto Loverflow;
	sz = n2;
    }
    return sz;

Loverflow:
    error(loc, "index %jd overflow for static array", sz);
    return 1;
}

unsigned TypeSArray::alignsize()
{
    return next->alignsize();
}

/**************************
 * This evaluates exp while setting length to be the number
 * of elements in the tuple t.
 */
Expression *semanticLength(Scope *sc, Type *t, Expression *exp)
{
    if (t->ty == Ttuple)
    {	ScopeDsymbol *sym = new ArrayScopeSymbol((TypeTuple *)t);
	sym->parent = sc->scopesym;
	sc = sc->push(sym);

	exp = exp->semantic(sc);

	sc->pop();
    }
    else
	exp = exp->semantic(sc);
    return exp;
}

Expression *semanticLength(Scope *sc, TupleDeclaration *s, Expression *exp)
{
    ScopeDsymbol *sym = new ArrayScopeSymbol(s);
    sym->parent = sc->scopesym;
    sc = sc->push(sym);

    exp = exp->semantic(sc);

    sc->pop();
    return exp;
}

void TypeSArray::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    //printf("TypeSArray::resolve() %s\n", toChars());
    next->resolve(loc, sc, pe, pt, ps);
    //printf("s = %p, e = %p, t = %p\n", *ps, *pe, *pt);
    if (*pe)
    {	// It's really an index expression
	Expression *e;
	e = new IndexExp(loc, *pe, dim);
	*pe = e;
    }
    else if (*ps)
    {	Dsymbol *s = *ps;
	TupleDeclaration *td = s->isTupleDeclaration();
	if (td)
	{
	    ScopeDsymbol *sym = new ArrayScopeSymbol(td);
	    sym->parent = sc->scopesym;
	    sc = sc->push(sym);

	    dim = dim->semantic(sc);
	    dim = dim->optimize(WANTvalue | WANTinterpret);
	    uinteger_t d = dim->toUInteger();

	    sc = sc->pop();

	    if (d >= td->objects->dim)
	    {	error(loc, "tuple index %ju exceeds %u", d, td->objects->dim);
		goto Ldefault;
	    }
	    Object *o = (Object *)td->objects->data[(size_t)d];
	    if (o->dyncast() == DYNCAST_DSYMBOL)
	    {
		*ps = (Dsymbol *)o;
		return;
	    }
	    if (o->dyncast() == DYNCAST_EXPRESSION)
	    {
		*ps = NULL;
		*pe = (Expression *)o;
		return;
	    }

	    /* Create a new TupleDeclaration which
	     * is a slice [d..d+1] out of the old one.
	     * Do it this way because TemplateInstance::semanticTiargs()
	     * can handle unresolved Objects this way.
	     */
	    Objects *objects = new Objects;
	    objects->setDim(1);
	    objects->data[0] = o;

	    TupleDeclaration *tds = new TupleDeclaration(loc, td->ident, objects);
	    *ps = tds;
	}
	else
	    goto Ldefault;
    }
    else
    {
     Ldefault:
	Type::resolve(loc, sc, pe, pt, ps);
    }
}

Type *TypeSArray::semantic(Loc loc, Scope *sc)
{
    //printf("TypeSArray::semantic() %s\n", toChars());

    Type *t;
    Expression *e;
    Dsymbol *s;
    next->resolve(loc, sc, &e, &t, &s);
    if (dim && s && s->isTupleDeclaration())
    {	TupleDeclaration *sd = s->isTupleDeclaration();

	dim = semanticLength(sc, sd, dim);
	dim = dim->optimize(WANTvalue | WANTinterpret);
	uinteger_t d = dim->toUInteger();

	if (d >= sd->objects->dim)
	{   error(loc, "tuple index %ju exceeds %u", d, sd->objects->dim);
	    return Type::terror;
	}
	Object *o = (Object *)sd->objects->data[(size_t)d];
	if (o->dyncast() != DYNCAST_TYPE)
	{   error(loc, "%s is not a type", toChars());
	    return Type::terror;
	}
	t = (Type *)o;
	return t;
    }

    next = next->semantic(loc,sc);
    Type *tbn = next->toBasetype();

    if (dim)
    {	integer_t n, n2;

	dim = semanticLength(sc, tbn, dim);

	dim = dim->optimize(WANTvalue | WANTinterpret);
	if (sc->parameterSpecialization && dim->op == TOKvar &&
	    ((VarExp *)dim)->var->storage_class & STCtemplateparameter)
	{
	    /* It could be a template parameter N which has no value yet:
	     *   template Foo(T : T[N], size_t N);
	     */
	    return this;
	}
	integer_t d1 = dim->toInteger();
	dim = dim->castTo(sc, tsize_t);
	dim = dim->optimize(WANTvalue);
	integer_t d2 = dim->toInteger();

	if (d1 != d2)
	    goto Loverflow;

	if (tbn->isintegral() ||
		 tbn->isfloating() ||
		 tbn->ty == Tpointer ||
		 tbn->ty == Tarray ||
		 tbn->ty == Tsarray ||
		 tbn->ty == Taarray ||
		 tbn->ty == Tclass)
	{
	    /* Only do this for types that don't need to have semantic()
	     * run on them for the size, since they may be forward referenced.
	     */
	    n = tbn->size(loc);
	    n2 = n * d2;
	    if ((int)n2 < 0)
		goto Loverflow;
	    if (n2 >= 0x1000000)	// put a 'reasonable' limit on it
		goto Loverflow;
	    if (n && n2 / n != d2)
	    {
	      Loverflow:
		error(loc, "index %jd overflow for static array", d1);
		dim = new IntegerExp(0, 1, tsize_t);
	    }
	}
    }
    switch (tbn->ty)
    {
	case Ttuple:
	{   // Index the tuple to get the type
	    assert(dim);
	    TypeTuple *tt = (TypeTuple *)tbn;
	    uinteger_t d = dim->toUInteger();

	    if (d >= tt->arguments->dim)
	    {	error(loc, "tuple index %ju exceeds %u", d, tt->arguments->dim);
		return Type::terror;
	    }
	    Argument *arg = (Argument *)tt->arguments->data[(size_t)d];
	    return arg->type;
	}
	case Tfunction:
	case Tnone:
	    error(loc, "can't have array of %s", tbn->toChars());
	    tbn = next = tint32;
	    break;
    }
    if (tbn->isauto())
	error(loc, "cannot have array of auto %s", tbn->toChars());
    return merge();
}

void TypeSArray::toDecoBuffer(OutBuffer *buf)
{
    buf->writeByte(mangleChar[ty]);
    if (dim)
	buf->printf("%ju", dim->toInteger());
    if (next)
	next->toDecoBuffer(buf);
}

void TypeSArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->printf("[%s]", dim->toChars());
}

Expression *TypeSArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeSArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	e = dim;
    }
    else if (ident == Id::ptr)
    {
	e = e->castTo(sc, next->pointerTo());
    }
    else
    {
	e = TypeArray::dotExp(sc, e, ident);
    }
    return e;
}

int TypeSArray::isString()
{
    TY nty = next->toBasetype()->ty;
    return nty == Tchar || nty == Twchar || nty == Tdchar;
}

unsigned TypeSArray::memalign(unsigned salign)
{
    return next->memalign(salign);
}

MATCH TypeSArray::implicitConvTo(Type *to)
{
    //printf("TypeSArray::implicitConvTo()\n");

    // Allow implicit conversion of static array to pointer or dynamic array
    if ((IMPLICIT_ARRAY_TO_PTR && to->ty == Tpointer) &&
	(to->next->ty == Tvoid || next->equals(to->next)
	 /*|| to->next->isBaseOf(next)*/))
    {
	return MATCHconvert;
    }
    if (to->ty == Tarray)
    {	int offset = 0;

	if (next->equals(to->next) ||
	    (to->next->isBaseOf(next, &offset) && offset == 0) ||
	    to->next->ty == Tvoid)
	    return MATCHconvert;
    }
#if 0
    if (to->ty == Tsarray)
    {
	TypeSArray *tsa = (TypeSArray *)to;

	if (next->equals(tsa->next) && dim->equals(tsa->dim))
	{
	    return MATCHconvert;
	}
    }
#endif
    return Type::implicitConvTo(to);
}

Expression *TypeSArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeSArray::defaultInit() '%s'\n", toChars());
#endif
    return next->defaultInit(loc);
}

int TypeSArray::isZeroInit()
{
    return next->isZeroInit();
}


Expression *TypeSArray::toExpression()
{
    Expression *e = next->toExpression();
    if (e)
    {	Expressions *arguments = new Expressions();
	arguments->push(dim);
	e = new ArrayExp(dim->loc, e, arguments);
    }
    return e;
}

int TypeSArray::hasPointers()
{
    return next->hasPointers();
}

/***************************** TypeDArray *****************************/

TypeDArray::TypeDArray(Type *t)
    : TypeArray(Tarray, t)
{
    //printf("TypeDArray(t = %p)\n", t);
}

Type *TypeDArray::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
	t = new TypeDArray(t);
    return t;
}

d_uns64 TypeDArray::size(Loc loc)
{
    //printf("TypeDArray::size()\n");
    return PTRSIZE * 2;
}

unsigned TypeDArray::alignsize()
{
    // A DArray consists of two ptr-sized values, so align it on pointer size
    // boundary
    return PTRSIZE;
}

Type *TypeDArray::semantic(Loc loc, Scope *sc)
{   Type *tn = next;

    tn = next->semantic(loc,sc);
    Type *tbn = tn->toBasetype();
    switch (tbn->ty)
    {
	case Tfunction:
	case Tnone:
	case Ttuple:
	    error(loc, "can't have array of %s", tbn->toChars());
	    tn = next = tint32;
	    break;
    }
    if (tn->isauto())
	error(loc, "cannot have array of auto %s", tn->toChars());
    if (next != tn)
	//deco = NULL;			// redo
	return tn->arrayOf();
    return merge();
}

void TypeDArray::toDecoBuffer(OutBuffer *buf)
{
    buf->writeByte(mangleChar[ty]);
    if (next)
	next->toDecoBuffer(buf);
}

void TypeDArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->writestring("[]");
}

Expression *TypeDArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeDArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	if (e->op == TOKstring)
	{   StringExp *se = (StringExp *)e;

	    return new IntegerExp(se->loc, se->len, Type::tindex);
	}
	e = new ArrayLengthExp(e->loc, e);
	e->type = Type::tsize_t;
	return e;
    }
    else if (ident == Id::ptr)
    {
	e = e->castTo(sc, next->pointerTo());
	return e;
    }
    else
    {
	e = TypeArray::dotExp(sc, e, ident);
    }
    return e;
}

int TypeDArray::isString()
{
    TY nty = next->toBasetype()->ty;
    return nty == Tchar || nty == Twchar || nty == Tdchar;
}

MATCH TypeDArray::implicitConvTo(Type *to)
{
    //printf("TypeDArray::implicitConvTo()\n");

    // Allow implicit conversion of array to pointer
    if (IMPLICIT_ARRAY_TO_PTR &&
	to->ty == Tpointer &&
	(to->next->ty == Tvoid || next->equals(to->next) /*|| to->next->isBaseOf(next)*/))
    {
	return MATCHconvert;
    }

    if (to->ty == Tarray)
    {	int offset = 0;

	if ((to->next->isBaseOf(next, &offset) && offset == 0) ||
	    to->next->ty == Tvoid)
	    return MATCHconvert;
    }
    return Type::implicitConvTo(to);
}

Expression *TypeDArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeDArray::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeDArray::isZeroInit()
{
    return 1;
}

int TypeDArray::checkBoolean()
{
    return TRUE;
}

int TypeDArray::hasPointers()
{
    return TRUE;
}

/***************************** TypeAArray *****************************/

TypeAArray::TypeAArray(Type *t, Type *index)
    : TypeArray(Taarray, t)
{
    this->index = index;
    this->key = NULL;
}

Type *TypeAArray::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    Type *ti = index->syntaxCopy();
    if (t == next && ti == index)
	t = this;
    else
	t = new TypeAArray(t, ti);
    return t;
}

d_uns64 TypeAArray::size(Loc loc)
{
    return PTRSIZE /* * 2*/;
}


Type *TypeAArray::semantic(Loc loc, Scope *sc)
{
    //printf("TypeAArray::semantic() %s index->ty = %d\n", toChars(), index->ty);

    // Deal with the case where we thought the index was a type, but
    // in reality it was an expression.
    if (index->ty == Tident || index->ty == Tinstance || index->ty == Tsarray)
    {
	Expression *e;
	Type *t;
	Dsymbol *s;

	index->resolve(loc, sc, &e, &t, &s);
	if (e)
	{   // It was an expression -
	    // Rewrite as a static array
	    TypeSArray *tsa;

	    tsa = new TypeSArray(next, e);
	    return tsa->semantic(loc,sc);
	}
	else if (t)
	    index = t;
	else
	    index->error(loc, "index is not a type or an expression");
    }
    else
	index = index->semantic(loc,sc);

    // Compute key type; the purpose of the key type is to
    // minimize the permutations of runtime library
    // routines as much as possible.
    key = index->toBasetype();
    switch (key->ty)
    {
#if 0
	case Tint8:
	case Tuns8:
	case Tint16:
	case Tuns16:
	    key = tint32;
	    break;
#endif

	case Tsarray:
#if 0
	    // Convert to Tarray
	    key = key->next->arrayOf();
#endif
	    break;
	case Tbit:
	case Tbool:
	case Tfunction:
	case Tvoid:
	case Tnone:
	    error(loc, "can't have associative array key of %s", key->toChars());
	    break;
    }
    next = next->semantic(loc,sc);
    switch (next->toBasetype()->ty)
    {
	case Tfunction:
	case Tnone:
	    error(loc, "can't have associative array of %s", next->toChars());
	    break;
    }
    if (next->isauto())
	error(loc, "cannot have array of auto %s", next->toChars());

    return merge();
}

Expression *TypeAArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeAArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;

	fd = FuncDeclaration::genCfunc(Type::tsize_t, Id::aaLen);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	arguments = new Expressions();
	arguments->push(e);
	e = new CallExp(e->loc, ec, arguments);
	e->type = fd->type->next;
    }
    else if (ident == Id::keys)
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;
	int size = key->size(e->loc);

	assert(size);
	fd = FuncDeclaration::genCfunc(Type::tvoid->arrayOf(), Id::aaKeys);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	arguments = new Expressions();
	arguments->push(e);
	arguments->push(new IntegerExp(0, size, Type::tsize_t));
	e = new CallExp(e->loc, ec, arguments);
	e->type = index->arrayOf();
    }
    else if (ident == Id::values)
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;

	fd = FuncDeclaration::genCfunc(Type::tvoid->arrayOf(), Id::aaValues);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	arguments = new Expressions();
	arguments->push(e);
	size_t keysize = key->size(e->loc);
	keysize = (keysize + 4 - 1) & ~(4 - 1);
	arguments->push(new IntegerExp(0, keysize, Type::tsize_t));
	arguments->push(new IntegerExp(0, next->size(e->loc), Type::tsize_t));
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::rehash)
    {
	Expression *ec;
	FuncDeclaration *fd;
	Expressions *arguments;

	fd = FuncDeclaration::genCfunc(Type::tvoid->pointerTo(), Id::aaRehash);
    fd->runTimeHack = true;
	ec = new VarExp(0, fd);
	arguments = new Expressions();
	arguments->push(e->addressOf(sc));
	arguments->push(key->getInternalTypeInfo(sc));
	e = new CallExp(e->loc, ec, arguments);
	e->type = this;
    }
    else
    {
	e = Type::dotExp(sc, e, ident);
    }
    return e;
}

void TypeAArray::toDecoBuffer(OutBuffer *buf)
{
    buf->writeByte(mangleChar[ty]);
    index->toDecoBuffer(buf);
    next->toDecoBuffer(buf);
}

void TypeAArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->writeByte('[');
    index->toCBuffer2(buf, hgs, 0);
    buf->writeByte(']');
}

Expression *TypeAArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeAArray::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeAArray::isZeroInit()
{
    return 1;
}

int TypeAArray::checkBoolean()
{
    return TRUE;
}

int TypeAArray::hasPointers()
{
    return TRUE;
}

/***************************** TypePointer *****************************/

TypePointer::TypePointer(Type *t)
    : Type(Tpointer, t)
{
}

Type *TypePointer::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
	t = new TypePointer(t);
    return t;
}

Type *TypePointer::semantic(Loc loc, Scope *sc)
{
    //printf("TypePointer::semantic()\n");
    Type *n = next->semantic(loc, sc);
    switch (n->toBasetype()->ty)
    {
	case Ttuple:
	    error(loc, "can't have pointer to %s", n->toChars());
	    n = tint32;
	    break;
    }
    if (n != next)
	deco = NULL;
    next = n;
    return merge();
}


d_uns64 TypePointer::size(Loc loc)
{
    return PTRSIZE;
}

void TypePointer::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypePointer::toCBuffer2() next = %d\n", next->ty);
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    if (next->ty != Tfunction)
	buf->writeByte('*');
}

MATCH TypePointer::implicitConvTo(Type *to)
{
    //printf("TypePointer::implicitConvTo()\n");

    if (this == to)
	return MATCHexact;
    if (to->ty == Tpointer && to->next)
    {
	if (to->next->ty == Tvoid)
	    return MATCHconvert;

#if 0
	if (to->next->isBaseOf(next))
	    return MATCHconvert;
#endif

	if (next->ty == Tfunction && to->next->ty == Tfunction)
	{   TypeFunction *tf;
	    TypeFunction *tfto;

	    tf   = (TypeFunction *)(next);
	    tfto = (TypeFunction *)(to->next);
	    return tfto->equals(tf) ? MATCHexact : MATCHnomatch;
	}
    }
//    if (to->ty == Tvoid)
//	return MATCHconvert;
    return MATCHnomatch;
}

int TypePointer::isscalar()
{
    return TRUE;
}

Expression *TypePointer::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypePointer::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypePointer::isZeroInit()
{
    return 1;
}

int TypePointer::hasPointers()
{
    return TRUE;
}


/***************************** TypeReference *****************************/

TypeReference::TypeReference(Type *t)
    : Type(Treference, t)
{
    if (t->ty == Tbit)
	error(0,"cannot make reference to a bit");
    // BUG: what about references to static arrays?
}

Type *TypeReference::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
	t = new TypeReference(t);
    return t;
}

d_uns64 TypeReference::size(Loc loc)
{
    return PTRSIZE;
}

void TypeReference::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->writeByte('&');
}

Expression *TypeReference::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeReference::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif

    // References just forward things along
    return next->dotExp(sc, e, ident);
}

Expression *TypeReference::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeReference::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeReference::isZeroInit()
{
    return 1;
}


/***************************** TypeFunction *****************************/

TypeFunction::TypeFunction(Arguments *parameters, Type *treturn, int varargs, enum LINK linkage)
    : Type(Tfunction, treturn)
{
//if (!treturn) *(char*)0=0;
//    assert(treturn);
    this->parameters = parameters;
    this->varargs = varargs;
    this->linkage = linkage;
    this->inuse = 0;
    this->llvmRetInPtr = false;
    this->llvmUsesThis = false;
}

Type *TypeFunction::syntaxCopy()
{
    Type *treturn = next ? next->syntaxCopy() : NULL;
    Arguments *params = Argument::arraySyntaxCopy(parameters);
    TypeFunction *t = new TypeFunction(params, treturn, varargs, linkage);
    t->llvmRetInPtr = llvmRetInPtr;
    t->llvmUsesThis = llvmUsesThis;
    return t;
}

/*******************************
 * Returns:
 *	0	types are distinct
 *	1	this is covariant with t
 *	2	arguments match as far as overloading goes,
 *		but types are not covariant
 *	3	cannot determine covariance because of forward references
 */

int Type::covariant(Type *t)
{
#if 0
    printf("Type::covariant(t = %s) %s\n", t->toChars(), toChars());
    printf("deco = %p, %p\n", deco, t->deco);
    printf("ty = %d\n", next->ty);
#endif

    int inoutmismatch = 0;

    if (equals(t))
	goto Lcovariant;
    if (ty != Tfunction || t->ty != Tfunction)
	goto Ldistinct;

    {
    TypeFunction *t1 = (TypeFunction *)this;
    TypeFunction *t2 = (TypeFunction *)t;

    if (t1->varargs != t2->varargs)
	goto Ldistinct;

    if (t1->parameters && t2->parameters)
    {
	size_t dim = Argument::dim(t1->parameters);
	if (dim != Argument::dim(t2->parameters))
	    goto Ldistinct;

	for (size_t i = 0; i < dim; i++)
	{   Argument *arg1 = Argument::getNth(t1->parameters, i);
	    Argument *arg2 = Argument::getNth(t2->parameters, i);

	    if (!arg1->type->equals(arg2->type))
		goto Ldistinct;
	    if (arg1->storageClass != arg2->storageClass)
		inoutmismatch = 1;
	}
    }
    else if (t1->parameters != t2->parameters)
	goto Ldistinct;

    // The argument lists match
    if (inoutmismatch)
	goto Lnotcovariant;
    if (t1->linkage != t2->linkage)
	goto Lnotcovariant;

    Type *t1n = t1->next;
    Type *t2n = t2->next;

    if (t1n->equals(t2n))
	goto Lcovariant;
    if (t1n->ty != Tclass || t2n->ty != Tclass)
	goto Lnotcovariant;

    // If t1n is forward referenced:
    ClassDeclaration *cd = ((TypeClass *)t1n)->sym;
    if (!cd->baseClass && cd->baseclasses.dim && !cd->isInterfaceDeclaration())
    {
	return 3;
    }

    if (t1n->implicitConvTo(t2n))
	goto Lcovariant;
    goto Lnotcovariant;
    }

Lcovariant:
    //printf("\tcovaraint: 1\n");
    return 1;

Ldistinct:
    //printf("\tcovaraint: 0\n");
    return 0;

Lnotcovariant:
    //printf("\tcovaraint: 2\n");
    return 2;
}

void TypeFunction::toDecoBuffer(OutBuffer *buf)
{   unsigned char mc;

    //printf("TypeFunction::toDecoBuffer() this = %p %s\n", this, toChars());
    //static int nest; if (++nest == 50) *(char*)0=0;
    if (inuse)
    {	inuse = 2;		// flag error to caller
	return;
    }
    inuse++;
    switch (linkage)
    {
	case LINKd:		mc = 'F';	break;
	case LINKc:		mc = 'U';	break;
	case LINKwindows:	mc = 'W';	break;
	case LINKpascal:	mc = 'V';	break;
	case LINKcpp:		mc = 'R';	break;
	default:
	    assert(0);
    }
    buf->writeByte(mc);
    // Write argument types
    Argument::argsToDecoBuffer(buf, parameters);
    //if (buf->data[buf->offset - 1] == '@') halt();
    buf->writeByte('Z' - varargs);	// mark end of arg list
    next->toDecoBuffer(buf);
    inuse--;
}

void TypeFunction::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
    char *p = NULL;

    if (inuse)
    {	inuse = 2;		// flag error to caller
	return;
    }
    inuse++;
    if (next && (!ident || ident->toHChars2() == ident->toChars()))
	next->toCBuffer2(buf, hgs, 0);
    if (hgs->ddoc != 1)
    {
	switch (linkage)
	{
	    case LINKd:		p = NULL;	break;
	    case LINKc:		p = "C ";	break;
	    case LINKwindows:	p = "Windows ";	break;
	    case LINKpascal:	p = "Pascal ";	break;
	    case LINKcpp:	p = "C++ ";	break;
	    default:
		assert(0);
	}
    }

    if (!hgs->hdrgen && p)
	buf->writestring(p);
    if (ident)
    {   buf->writeByte(' ');
	buf->writestring(ident->toHChars2());
    }
    Argument::argsToCBuffer(buf, hgs, parameters, varargs);
    inuse--;
}

void TypeFunction::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    char *p = NULL;

    if (inuse)
    {	inuse = 2;		// flag error to caller
	return;
    }
    inuse++;
    if (next)
	next->toCBuffer2(buf, hgs, 0);
    if (hgs->ddoc != 1)
    {
	switch (linkage)
	{
	    case LINKd:		p = NULL;	break;
	    case LINKc:		p = "C ";	break;
	    case LINKwindows:	p = "Windows ";	break;
	    case LINKpascal:	p = "Pascal ";	break;
	    case LINKcpp:	p = "C++ ";	break;
	    default:
		assert(0);
	}
    }

    if (!hgs->hdrgen && p)
	buf->writestring(p);
    buf->writestring(" function");
    Argument::argsToCBuffer(buf, hgs, parameters, varargs);
    inuse--;
}

Type *TypeFunction::semantic(Loc loc, Scope *sc)
{
    if (deco)			// if semantic() already run
    {
	//printf("already done\n");
	return this;
    }
    //printf("TypeFunction::semantic() this = %p\n", this);

    TypeFunction *tf = (TypeFunction *)mem.malloc(sizeof(TypeFunction));
    memcpy(tf, this, sizeof(TypeFunction));
    if (parameters)
    {	tf->parameters = (Arguments *)parameters->copy();
	for (size_t i = 0; i < parameters->dim; i++)
	{   Argument *arg = (Argument *)parameters->data[i];
	    Argument *cpy = (Argument *)mem.malloc(sizeof(Argument));
	    memcpy(cpy, arg, sizeof(Argument));
	    tf->parameters->data[i] = (void *)cpy;
	}
    }

    tf->linkage = sc->linkage;
    if (!tf->next)
    {
	assert(global.errors);
	tf->next = tvoid;
    }
    tf->next = tf->next->semantic(loc,sc);
    if (tf->next->toBasetype()->ty == Tsarray)
    {	error(loc, "functions cannot return static array %s", tf->next->toChars());
	tf->next = Type::terror;
    }
    if (tf->next->toBasetype()->ty == Tfunction)
    {	error(loc, "functions cannot return a function");
	tf->next = Type::terror;
    }
    if (tf->next->toBasetype()->ty == Ttuple)
    {	error(loc, "functions cannot return a tuple");
	tf->next = Type::terror;
    }
    if (tf->next->isauto() && !(sc->flags & SCOPEctor))
	error(loc, "functions cannot return auto %s", tf->next->toChars());

    if (tf->parameters)
    {	size_t dim = Argument::dim(tf->parameters);

	for (size_t i = 0; i < dim; i++)
	{   Argument *arg = Argument::getNth(tf->parameters, i);
	    Type *t;

	    tf->inuse++;
	    arg->type = arg->type->semantic(loc,sc);
	    if (tf->inuse == 1) tf->inuse--;
	    t = arg->type->toBasetype();

	    if (arg->storageClass & (STCout | STCref | STClazy))
	    {
		if (t->ty == Tsarray)
		    error(loc, "cannot have out or ref parameter of type %s", t->toChars());
	    }
	    if (!(arg->storageClass & STClazy) && t->ty == Tvoid)
		error(loc, "cannot have parameter of type %s", arg->type->toChars());

	    if (arg->defaultArg)
	    {
		arg->defaultArg = arg->defaultArg->semantic(sc);
		arg->defaultArg = resolveProperties(sc, arg->defaultArg);
		arg->defaultArg = arg->defaultArg->implicitCastTo(sc, arg->type);
	    }

	    /* If arg turns out to be a tuple, the number of parameters may
	     * change.
	     */
	    if (t->ty == Ttuple)
	    {	dim = Argument::dim(tf->parameters);
		i--;
	    }
	}
    }
    tf->deco = tf->merge()->deco;

    if (tf->inuse)
    {	error(loc, "recursive type");
	tf->inuse = 0;
	return terror;
    }

    if (tf->varargs == 1 && tf->linkage != LINKd && Argument::dim(tf->parameters) == 0)
	error(loc, "variadic functions with non-D linkage must have at least one parameter");

    /* Don't return merge(), because arg identifiers and default args
     * can be different
     * even though the types match
     */
    return tf;
}

/********************************
 * 'args' are being matched to function 'this'
 * Determine match level.
 * Returns:
 *	MATCHxxxx
 */

int TypeFunction::callMatch(Expressions *args)
{
    //printf("TypeFunction::callMatch()\n");
    int match = MATCHexact;		// assume exact match

    size_t nparams = Argument::dim(parameters);
    size_t nargs = args ? args->dim : 0;
    if (nparams == nargs)
	;
    else if (nargs > nparams)
    {
	if (varargs == 0)
	    goto Nomatch;		// too many args; no match
	match = MATCHconvert;		// match ... with a "conversion" match level
    }

    for (size_t u = 0; u < nparams; u++)
    {	int m;
	Expression *arg;

	// BUG: what about out and ref?

	Argument *p = Argument::getNth(parameters, u);
	assert(p);
	if (u >= nargs)
	{
	    if (p->defaultArg)
		continue;
	    if (varargs == 2 && u + 1 == nparams)
		goto L1;
	    goto Nomatch;		// not enough arguments
	}
	arg = (Expression *)args->data[u];
	assert(arg);
	if (p->storageClass & STClazy && p->type->ty == Tvoid && arg->type->ty != Tvoid)
	    m = MATCHconvert;
	else
	    m = arg->implicitConvTo(p->type);
	//printf("\tm = %d\n", m);
	if (m == MATCHnomatch)			// if no match
	{
	  L1:
	    if (varargs == 2 && u + 1 == nparams)	// if last varargs param
	    {	Type *tb = p->type->toBasetype();
		TypeSArray *tsa;
		integer_t sz;

		switch (tb->ty)
		{
		    case Tsarray:
			tsa = (TypeSArray *)tb;
			sz = tsa->dim->toInteger();
			if (sz != nargs - u)
			    goto Nomatch;
		    case Tarray:
			for (; u < nargs; u++)
			{
			    arg = (Expression *)args->data[u];
			    assert(arg);
#if 1
			    /* If lazy array of delegates,
			     * convert arg(s) to delegate(s)
			     */
			    Type *tret = p->isLazyArray();
			    if (tret)
			    {
				if (tb->next->equals(arg->type))
				{   m = MATCHexact;
				}
				else
				{
				    m = arg->implicitConvTo(tret);
				    if (m == MATCHnomatch)
				    {
					if (tret->toBasetype()->ty == Tvoid)
					    m = MATCHconvert;
				    }
				}
			    }
			    else
				m = arg->implicitConvTo(tb->next);
#else
			    m = arg->implicitConvTo(tb->next);
#endif
			    if (m == 0)
				goto Nomatch;
			    if (m < match)
				match = m;
			}
			goto Ldone;

		    case Tclass:
			// Should see if there's a constructor match?
			// Or just leave it ambiguous?
			goto Ldone;

		    default:
			goto Nomatch;
		}
	    }
	    goto Nomatch;
	}
	if (m < match)
	    match = m;			// pick worst match
    }

Ldone:
    //printf("match = %d\n", match);
    return match;

Nomatch:
    //printf("no match\n");
    return MATCHnomatch;
}

Type *TypeFunction::reliesOnTident()
{
    if (parameters)
    {
	for (size_t i = 0; i < parameters->dim; i++)
	{   Argument *arg = (Argument *)parameters->data[i];
	    Type *t = arg->type->reliesOnTident();
	    if (t)
		return t;
	}
    }
    return next->reliesOnTident();
}

/***************************** TypeDelegate *****************************/

TypeDelegate::TypeDelegate(Type *t)
    : Type(Tfunction, t)
{
    ty = Tdelegate;
}

Type *TypeDelegate::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
	t = new TypeDelegate(t);
    return t;
}

Type *TypeDelegate::semantic(Loc loc, Scope *sc)
{
    if (deco)			// if semantic() already run
    {
	//printf("already done\n");
	return this;
    }
    next = next->semantic(loc,sc);
    return merge();
}

d_uns64 TypeDelegate::size(Loc loc)
{
    return PTRSIZE * 2;
}

void TypeDelegate::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    TypeFunction *tf = (TypeFunction *)next;

    tf->next->toCBuffer2(buf, hgs, 0);
    buf->writestring(" delegate");
    Argument::argsToCBuffer(buf, hgs, tf->parameters, tf->varargs);
}

Expression *TypeDelegate::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeDelegate::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeDelegate::isZeroInit()
{
    return 1;
}

int TypeDelegate::checkBoolean()
{
    return TRUE;
}

Expression *TypeDelegate::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeDelegate::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::ptr)
    {
	e->type = tvoidptr;
	return e;
    }
    else if (ident == Id::funcptr)
    {
	e = e->addressOf(sc);
	e->type = tvoidptr;
	e = new AddExp(e->loc, e, new IntegerExp(PTRSIZE));
	e->type = tvoidptr;
	e = new PtrExp(e->loc, e);
	e->type = next->pointerTo();
	return e;
    }
    else
    {
	e = Type::dotExp(sc, e, ident);
    }
    return e;
}

int TypeDelegate::hasPointers()
{
    return TRUE;
}



/***************************** TypeQualified *****************************/

TypeQualified::TypeQualified(TY ty, Loc loc)
    : Type(ty, NULL)
{
    this->loc = loc;
}

void TypeQualified::syntaxCopyHelper(TypeQualified *t)
{
    //printf("TypeQualified::syntaxCopyHelper(%s) %s\n", t->toChars(), toChars());
    idents.setDim(t->idents.dim);
    for (int i = 0; i < idents.dim; i++)
    {
	Identifier *id = (Identifier *)t->idents.data[i];
	if (id->dyncast() == DYNCAST_DSYMBOL)
	{
	    TemplateInstance *ti = (TemplateInstance *)id;

	    ti = (TemplateInstance *)ti->syntaxCopy(NULL);
	    id = (Identifier *)ti;
	}
	idents.data[i] = id;
    }
}


void TypeQualified::addIdent(Identifier *ident)
{
    idents.push(ident);
}

void TypeQualified::toCBuffer2Helper(OutBuffer *buf, HdrGenState *hgs)
{
    int i;

    for (i = 0; i < idents.dim; i++)
    {	Identifier *id = (Identifier *)idents.data[i];

	buf->writeByte('.');

	if (id->dyncast() == DYNCAST_DSYMBOL)
	{
	    TemplateInstance *ti = (TemplateInstance *)id;
	    ti->toCBuffer(buf, hgs);
	}
	else
	    buf->writestring(id->toChars());
    }
}

d_uns64 TypeQualified::size(Loc loc)
{
    error(this->loc, "size of type %s is not known", toChars());
    return 1;
}

/*************************************
 * Takes an array of Identifiers and figures out if
 * it represents a Type or an Expression.
 * Output:
 *	if expression, *pe is set
 *	if type, *pt is set
 */

void TypeQualified::resolveHelper(Loc loc, Scope *sc,
	Dsymbol *s, Dsymbol *scopesym,
	Expression **pe, Type **pt, Dsymbol **ps)
{
    Identifier *id = NULL;
    int i;
    VarDeclaration *v;
    EnumMember *em;
    TupleDeclaration *td;
    Type *t;
    Expression *e;

#if 0
    printf("TypeQualified::resolveHelper(sc = %p, idents = '%s')\n", sc, toChars());
    if (scopesym)
	printf("\tscopesym = '%s'\n", scopesym->toChars());
#endif
    *pe = NULL;
    *pt = NULL;
    *ps = NULL;
    if (s)
    {
	//printf("\t1: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
	s = s->toAlias();
	//printf("\t2: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
	for (i = 0; i < idents.dim; i++)
	{   Dsymbol *sm;

	    id = (Identifier *)idents.data[i];
	    sm = s->searchX(loc, sc, id);
	    //printf("\t3: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
	    //printf("getType = '%s'\n", s->getType()->toChars());
	    if (!sm)
	    {
		v = s->isVarDeclaration();
		if (v && id == Id::length)
		{
		    if (v->isConst() && v->getExpInitializer())
		    {	e = v->getExpInitializer()->exp;
		    }
		    else
			e = new VarExp(loc, v);
		    t = e->type;
		    if (!t)
			goto Lerror;
		    goto L3;
		}
		t = s->getType();
		if (!t && s->isDeclaration())
		    t = s->isDeclaration()->type;
		if (t)
		{
		    sm = t->toDsymbol(sc);
		    if (sm)
		    {	sm = sm->search(loc, id, 0);
			if (sm)
			    goto L2;
		    }
		    //e = t->getProperty(loc, id);
		    e = new TypeExp(loc, t);
		    e = t->dotExp(sc, e, id);
		    i++;
		L3:
		    for (; i < idents.dim; i++)
		    {
			id = (Identifier *)idents.data[i];
			//printf("e: '%s', id: '%s', type = %p\n", e->toChars(), id->toChars(), e->type);
			e = e->type->dotExp(sc, e, id);
		    }
		    *pe = e;
		}
		else
	          Lerror:
		    error(loc, "identifier '%s' of '%s' is not defined", id->toChars(), toChars());
		return;
	    }
	L2:
	    s = sm->toAlias();
	}

	v = s->isVarDeclaration();
	if (v)
	{
	    // It's not a type, it's an expression
	    if (v->isConst() && v->getExpInitializer())
	    {
		ExpInitializer *ei = v->getExpInitializer();
		assert(ei);
		*pe = ei->exp->copy();	// make copy so we can change loc
		(*pe)->loc = loc;
	    }
	    else
	    {
#if 0
		WithScopeSymbol *withsym;
		if (scopesym && (withsym = scopesym->isWithScopeSymbol()) != NULL)
		{
		    // Same as wthis.ident
		    e = new VarExp(loc, withsym->withstate->wthis);
		    e = new DotIdExp(loc, e, ident);
		    //assert(0);	// BUG: should handle this
		}
		else
#endif
		    *pe = new VarExp(loc, v);
	    }
	    return;
	}
	em = s->isEnumMember();
	if (em)
	{
	    // It's not a type, it's an expression
	    *pe = em->value->copy();
	    return;
	}

L1:
	t = s->getType();
	if (!t)
	{
	    // If the symbol is an import, try looking inside the import
	    Import *si;

	    si = s->isImport();
	    if (si)
	    {
		s = si->search(loc, s->ident, 0);
		if (s && s != si)
		    goto L1;
		s = si;
	    }
	    *ps = s;
	    return;
	}
	if (t->ty == Tinstance && t != this && !t->deco)
	{   error(loc, "forward reference to '%s'", t->toChars());
	    return;
	}

	if (t != this)
	{
	    if (t->reliesOnTident())
	    {
		Scope *scx;

		for (scx = sc; 1; scx = scx->enclosing)
		{
		    if (!scx)
		    {   error(loc, "forward reference to '%s'", t->toChars());
			return;
		    }
		    if (scx->scopesym == scopesym)
			break;
		}
		t = t->semantic(loc, scx);
		//((TypeIdentifier *)t)->resolve(loc, scx, pe, &t, ps);
	    }
	}
	if (t->ty == Ttuple)
	    *pt = t;
	else
	    *pt = t->merge();
    }
    if (!s)
    {
	error(loc, "identifier '%s' is not defined", toChars());
    }
}

/***************************** TypeIdentifier *****************************/

TypeIdentifier::TypeIdentifier(Loc loc, Identifier *ident)
    : TypeQualified(Tident, loc)
{
    this->ident = ident;
}


Type *TypeIdentifier::syntaxCopy()
{
    TypeIdentifier *t;

    t = new TypeIdentifier(loc, ident);
    t->syntaxCopyHelper(this);
    return t;
}

void TypeIdentifier::toDecoBuffer(OutBuffer *buf)
{   unsigned len;
    char *name;

    name = ident->toChars();
    len = strlen(name);
    buf->printf("%c%d%s", mangleChar[ty], len, name);
    //buf->printf("%c%s", mangleChar[ty], name);
}

void TypeIdentifier::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(this->ident->toChars());
    toCBuffer2Helper(buf, hgs);
}

/*************************************
 * Takes an array of Identifiers and figures out if
 * it represents a Type or an Expression.
 * Output:
 *	if expression, *pe is set
 *	if type, *pt is set
 */

void TypeIdentifier::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{   Dsymbol *s;
    Dsymbol *scopesym;

    //printf("TypeIdentifier::resolve(sc = %p, idents = '%s')\n", sc, toChars());
    s = sc->search(loc, ident, &scopesym);
    resolveHelper(loc, sc, s, scopesym, pe, pt, ps);
}

/*****************************************
 * See if type resolves to a symbol, if so,
 * return that symbol.
 */

Dsymbol *TypeIdentifier::toDsymbol(Scope *sc)
{
    //printf("TypeIdentifier::toDsymbol('%s')\n", toChars());
    if (!sc)
	return NULL;
    //printf("ident = '%s'\n", ident->toChars());

    Dsymbol *scopesym;
    Dsymbol *s = sc->search(loc, ident, &scopesym);
    if (s)
    {
	for (int i = 0; i < idents.dim; i++)
	{
	    Identifier *id = (Identifier *)idents.data[i];
	    s = s->searchX(loc, sc, id);
	    if (!s)                 // failed to find a symbol
	    {	//printf("\tdidn't find a symbol\n");
		break;
	    }
	}
    }
    return s;
}

Type *TypeIdentifier::semantic(Loc loc, Scope *sc)
{
    Type *t;
    Expression *e;
    Dsymbol *s;

    //printf("TypeIdentifier::semantic(%s)\n", toChars());
    resolve(loc, sc, &e, &t, &s);
    if (t)
    {
	//printf("\tit's a type %d, %s, %s\n", t->ty, t->toChars(), t->deco);

	if (t->ty == Ttypedef)
	{   TypeTypedef *tt = (TypeTypedef *)t;

	    if (tt->sym->sem == 1)
		error(loc, "circular reference of typedef %s", tt->toChars());
	}
    }
    else
    {
#ifdef DEBUG
	if (!global.gag)
	    printf("1: ");
#endif
	if (s)
	{
	    s->error(loc, "is used as a type");
	}
	else
	    error(loc, "%s is used as a type", toChars());
	t = tvoid;
    }
    //t->print();
    return t;
}

Type *TypeIdentifier::reliesOnTident()
{
    return this;
}

Expression *TypeIdentifier::toExpression()
{
    Expression *e = new IdentifierExp(loc, ident);
    for (int i = 0; i < idents.dim; i++)
    {
	Identifier *id = (Identifier *)idents.data[i];
	e = new DotIdExp(loc, e, id);
    }

    return e;
}

/***************************** TypeInstance *****************************/

TypeInstance::TypeInstance(Loc loc, TemplateInstance *tempinst)
    : TypeQualified(Tinstance, loc)
{
    this->tempinst = tempinst;
}

Type *TypeInstance::syntaxCopy()
{
    //printf("TypeInstance::syntaxCopy() %s, %d\n", toChars(), idents.dim);
    TypeInstance *t;

    t = new TypeInstance(loc, (TemplateInstance *)tempinst->syntaxCopy(NULL));
    t->syntaxCopyHelper(this);
    return t;
}


void TypeInstance::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    tempinst->toCBuffer(buf, hgs);
    toCBuffer2Helper(buf, hgs);
}

void TypeInstance::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    // Note close similarity to TypeIdentifier::resolve()

    Dsymbol *s;

    *pe = NULL;
    *pt = NULL;
    *ps = NULL;

#if 0
    if (!idents.dim)
    {
	error(loc, "template instance '%s' has no identifier", toChars());
	return;
    }
#endif
    //id = (Identifier *)idents.data[0];
    //printf("TypeInstance::resolve(sc = %p, idents = '%s')\n", sc, id->toChars());
    s = tempinst;
    if (s)
	s->semantic(sc);
    resolveHelper(loc, sc, s, NULL, pe, pt, ps);
    //printf("pt = '%s'\n", (*pt)->toChars());
}

Type *TypeInstance::semantic(Loc loc, Scope *sc)
{
    Type *t;
    Expression *e;
    Dsymbol *s;

    //printf("TypeInstance::semantic(%s)\n", toChars());

    if (sc->parameterSpecialization)
    {
	unsigned errors = global.errors;
	global.gag++;

	resolve(loc, sc, &e, &t, &s);

	global.gag--;
	if (errors != global.errors)
	{   if (global.gag == 0)
		global.errors = errors;
	    return this;
	}
    }
    else
	resolve(loc, sc, &e, &t, &s);

    if (!t)
    {
#ifdef DEBUG
	printf("2: ");
#endif
	error(loc, "%s is used as a type", toChars());
	t = tvoid;
    }
    return t;
}


/***************************** TypeTypeof *****************************/

TypeTypeof::TypeTypeof(Loc loc, Expression *exp)
	: TypeQualified(Ttypeof, loc)
{
    this->exp = exp;
}

Type *TypeTypeof::syntaxCopy()
{
    TypeTypeof *t;

    t = new TypeTypeof(loc, exp->syntaxCopy());
    t->syntaxCopyHelper(this);
    return t;
}

Dsymbol *TypeTypeof::toDsymbol(Scope *sc)
{
    Type *t;

    t = semantic(0, sc);
    if (t == this)
	return NULL;
    return t->toDsymbol(sc);
}

void TypeTypeof::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring("typeof(");
    exp->toCBuffer(buf, hgs);
    buf->writeByte(')');
    toCBuffer2Helper(buf, hgs);
}

Type *TypeTypeof::semantic(Loc loc, Scope *sc)
{   Expression *e;
    Type *t;

    //printf("TypeTypeof::semantic() %p\n", this);

    //static int nest; if (++nest == 50) *(char*)0=0;

#if 0
    /* Special case for typeof(this) and typeof(super) since both
     * should work even if they are not inside a non-static member function
     */
    if (exp->op == TOKthis || exp->op == TOKsuper)
    {
	// Find enclosing struct or class
	for (Dsymbol *s = sc->parent; 1; s = s->parent)
	{
	    ClassDeclaration *cd;
	    StructDeclaration *sd;

	    if (!s)
	    {
		error(loc, "%s is not in a struct or class scope", exp->toChars());
		goto Lerr;
	    }
	    cd = s->isClassDeclaration();
	    if (cd)
	    {
		if (exp->op == TOKsuper)
		{
		    cd = cd->baseClass;
		    if (!cd)
		    {	error(loc, "class %s has no 'super'", s->toChars());
			goto Lerr;
		    }
		}
		t = cd->type;
		break;
	    }
	    sd = s->isStructDeclaration();
	    if (sd)
	    {
		if (exp->op == TOKsuper)
		{
		    error(loc, "struct %s has no 'super'", sd->toChars());
		    goto Lerr;
		}
		t = sd->type->pointerTo();
		break;
	    }
	}
    }
    else
#endif
    {
	sc->intypeof++;
	exp = exp->semantic(sc);
	sc->intypeof--;
	t = exp->type;
	if (!t)
	{
	    error(loc, "expression (%s) has no type", exp->toChars());
	    goto Lerr;
	}
    }

    if (idents.dim)
    {
	Dsymbol *s = t->toDsymbol(sc);
	for (size_t i = 0; i < idents.dim; i++)
	{
	    if (!s)
		break;
	    Identifier *id = (Identifier *)idents.data[i];
	    s = s->searchX(loc, sc, id);
	}
	if (s)
	{
	    t = s->getType();
	    if (!t)
	    {	error(loc, "%s is not a type", s->toChars());
		goto Lerr;
	    }
	}
	else
	{   error(loc, "cannot resolve .property for %s", toChars());
	    goto Lerr;
	}
    }
    return t;

Lerr:
    return tvoid;
}

d_uns64 TypeTypeof::size(Loc loc)
{
    if (exp->type)
	return exp->type->size(loc);
    else
	return TypeQualified::size(loc);
}



/***************************** TypeEnum *****************************/

TypeEnum::TypeEnum(EnumDeclaration *sym)
	: Type(Tenum, NULL)
{
    this->sym = sym;
}

char *TypeEnum::toChars()
{
    return sym->toChars();
}

Type *TypeEnum::semantic(Loc loc, Scope *sc)
{
    sym->semantic(sc);
    return merge();
}

d_uns64 TypeEnum::size(Loc loc)
{
    if (!sym->memtype)
    {
	error(loc, "enum %s is forward referenced", sym->toChars());
	return 4;
    }
    return sym->memtype->size(loc);
}

unsigned TypeEnum::alignsize()
{
    if (!sym->memtype)
    {
#ifdef DEBUG
	printf("1: ");
#endif
	error(0, "enum %s is forward referenced", sym->toChars());
	return 4;
    }
    return sym->memtype->alignsize();
}

Dsymbol *TypeEnum::toDsymbol(Scope *sc)
{
    return sym;
}

Type *TypeEnum::toBasetype()
{
    if (!sym->memtype)
    {
#ifdef DEBUG
	printf("2: ");
#endif
	error(sym->loc, "enum %s is forward referenced", sym->toChars());
	return tint32;
    }
    return sym->memtype->toBasetype();
}

void TypeEnum::toDecoBuffer(OutBuffer *buf)
{   char *name;

    name = sym->mangle();
//    if (name[0] == '_' && name[1] == 'D')
//	name += 2;
    buf->printf("%c%s", mangleChar[ty], name);
}

void TypeEnum::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(sym->toChars());
}

Expression *TypeEnum::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
    EnumMember *m;
    Dsymbol *s;
    Expression *em;

#if LOGDOTEXP
    printf("TypeEnum::dotExp(e = '%s', ident = '%s') '%s'\n", e->toChars(), ident->toChars(), toChars());
#endif
    if (!sym->symtab)
	goto Lfwd;
    s = sym->symtab->lookup(ident);
    if (!s)
    {
	return getProperty(e->loc, ident);
    }
    m = s->isEnumMember();
    em = m->value->copy();
    em->loc = e->loc;
    return em;

Lfwd:
    error(e->loc, "forward reference of %s.%s", toChars(), ident->toChars());
    return new IntegerExp(0, 0, this);
}

Expression *TypeEnum::getProperty(Loc loc, Identifier *ident)
{   Expression *e;

    if (ident == Id::max)
    {
	if (!sym->symtab)
	    goto Lfwd;
	e = new IntegerExp(0, sym->maxval, this);
    }
    else if (ident == Id::min)
    {
	if (!sym->symtab)
	    goto Lfwd;
	e = new IntegerExp(0, sym->minval, this);
    }
    else if (ident == Id::init)
    {
	if (!sym->symtab)
	    goto Lfwd;
	e = defaultInit(loc);
    }
    else
    {
	if (!sym->memtype)
	    goto Lfwd;
	e = sym->memtype->getProperty(loc, ident);
    }
    return e;

Lfwd:
    error(loc, "forward reference of %s.%s", toChars(), ident->toChars());
    return new IntegerExp(0, 0, this);
}

int TypeEnum::isintegral()
{
    return 1;
}

int TypeEnum::isfloating()
{
    return 0;
}

int TypeEnum::isunsigned()
{
    return sym->memtype->isunsigned();
}

int TypeEnum::isscalar()
{
    return 1;
    //return sym->memtype->isscalar();
}

MATCH TypeEnum::implicitConvTo(Type *to)
{   MATCH m;

    //printf("TypeEnum::implicitConvTo()\n");
    if (this->equals(to))
	m = MATCHexact;		// exact match
    else if (sym->memtype->implicitConvTo(to))
	m = MATCHconvert;	// match with conversions
    else
	m = MATCHnomatch;	// no match
    return m;
}

Expression *TypeEnum::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeEnum::defaultInit() '%s'\n", toChars());
#endif
    // Initialize to first member of enum
    Expression *e;
    e = new IntegerExp(loc, sym->defaultval, this);
    return e;
}

int TypeEnum::isZeroInit()
{
    return (sym->defaultval == 0);
}

int TypeEnum::hasPointers()
{
    return toBasetype()->hasPointers();
}

/***************************** TypeTypedef *****************************/

TypeTypedef::TypeTypedef(TypedefDeclaration *sym)
	: Type(Ttypedef, NULL)
{
    this->sym = sym;
}

Type *TypeTypedef::syntaxCopy()
{
    return this;
}

char *TypeTypedef::toChars()
{
    return sym->toChars();
}

Type *TypeTypedef::semantic(Loc loc, Scope *sc)
{
    //printf("TypeTypedef::semantic(%s), sem = %d\n", toChars(), sym->sem);
    sym->semantic(sc);
    return merge();
}

d_uns64 TypeTypedef::size(Loc loc)
{
    return sym->basetype->size(loc);
}

unsigned TypeTypedef::alignsize()
{
    return sym->basetype->alignsize();
}

Dsymbol *TypeTypedef::toDsymbol(Scope *sc)
{
    return sym;
}

void TypeTypedef::toDecoBuffer(OutBuffer *buf)
{   unsigned len;
    char *name;

    name = sym->mangle();
//    if (name[0] == '_' && name[1] == 'D')
//	name += 2;
    //len = strlen(name);
    //buf->printf("%c%d%s", mangleChar[ty], len, name);
    buf->printf("%c%s", mangleChar[ty], name);
}

void TypeTypedef::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypeTypedef::toCBuffer2() '%s'\n", sym->toChars());
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(sym->toChars());
}

Expression *TypeTypedef::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeTypedef::dotExp(e = '%s', ident = '%s') '%s'\n", e->toChars(), ident->toChars(), toChars());
#endif
    if (ident == Id::init)
    {
	return Type::dotExp(sc, e, ident);
    }
    return sym->basetype->dotExp(sc, e, ident);
}

Expression *TypeTypedef::getProperty(Loc loc, Identifier *ident)
{
    if (ident == Id::init)
    {
	return Type::getProperty(loc, ident);
    }
    return sym->basetype->getProperty(loc, ident);
}

int TypeTypedef::isbit()
{
    return sym->basetype->isbit();
}

int TypeTypedef::isintegral()
{
    //printf("TypeTypedef::isintegral()\n");
    //printf("sym = '%s'\n", sym->toChars());
    //printf("basetype = '%s'\n", sym->basetype->toChars());
    return sym->basetype->isintegral();
}

int TypeTypedef::isfloating()
{
    return sym->basetype->isfloating();
}

int TypeTypedef::isreal()
{
    return sym->basetype->isreal();
}

int TypeTypedef::isimaginary()
{
    return sym->basetype->isimaginary();
}

int TypeTypedef::iscomplex()
{
    return sym->basetype->iscomplex();
}

int TypeTypedef::isunsigned()
{
    return sym->basetype->isunsigned();
}

int TypeTypedef::isscalar()
{
    return sym->basetype->isscalar();
}

int TypeTypedef::checkBoolean()
{
    return sym->basetype->checkBoolean();
}

Type *TypeTypedef::toBasetype()
{
    if (sym->inuse)
    {
	sym->error("circular definition");
	sym->basetype = Type::terror;
	return Type::terror;
    }
    sym->inuse = 1;
    Type *t = sym->basetype->toBasetype();
    sym->inuse = 0;
    return t;
}

MATCH TypeTypedef::implicitConvTo(Type *to)
{   MATCH m;

    //printf("TypeTypedef::implicitConvTo()\n");
    if (this->equals(to))
	m = MATCHexact;		// exact match
    else if (sym->basetype->implicitConvTo(to))
	m = MATCHconvert;	// match with conversions
    else
	m = MATCHnomatch;	// no match
    return m;
}

Expression *TypeTypedef::defaultInit(Loc loc)
{   Expression *e;
    Type *bt;

#if LOGDEFAULTINIT
    printf("TypeTypedef::defaultInit() '%s'\n", toChars());
#endif
    if (sym->init)
    {
	//sym->init->toExpression()->print();
	return sym->init->toExpression();
    }
    bt = sym->basetype;
    e = bt->defaultInit(loc);
    e->type = this;
    while (bt->ty == Tsarray)
    {
	e->type = bt->next;
	bt = bt->next->toBasetype();
    }
    return e;
}

int TypeTypedef::isZeroInit()
{
    if (sym->init)
    {
	if (sym->init->isVoidInitializer())
	    return 1;		// initialize voids to 0
	Expression *e = sym->init->toExpression();
	if (e && e->isBool(FALSE))
	    return 1;
	return 0;		// assume not
    }
    if (sym->inuse)
    {
	sym->error("circular definition");
	sym->basetype = Type::terror;
    }
    sym->inuse = 1;
    int result = sym->basetype->isZeroInit();
    sym->inuse = 0;
    return result;
}

int TypeTypedef::hasPointers()
{
    return toBasetype()->hasPointers();
}

/***************************** TypeStruct *****************************/

TypeStruct::TypeStruct(StructDeclaration *sym)
	: Type(Tstruct, NULL)
{
    this->sym = sym;
}

char *TypeStruct::toChars()
{
    //printf("sym.parent: %s, deco = %s\n", sym->parent->toChars(), deco);
    TemplateInstance *ti = sym->parent->isTemplateInstance();
    if (ti && ti->toAlias() == sym)
	return ti->toChars();
    return sym->toChars();
}

Type *TypeStruct::syntaxCopy()
{
    return this;
}

Type *TypeStruct::semantic(Loc loc, Scope *sc)
{
    //printf("TypeStruct::semantic('%s')\n", sym->toChars());

    /* Cannot do semantic for sym because scope chain may not
     * be right.
     */
    //sym->semantic(sc);

    return merge();
}

d_uns64 TypeStruct::size(Loc loc)
{
    return sym->size(loc);
}

unsigned TypeStruct::alignsize()
{   unsigned sz;

    sym->size(0);		// give error for forward references
    sz = sym->alignsize;
    if (sz > sym->structalign)
	sz = sym->structalign;
    return sz;
}

Dsymbol *TypeStruct::toDsymbol(Scope *sc)
{
    return sym;
}

void TypeStruct::toDecoBuffer(OutBuffer *buf)
{   unsigned len;
    char *name;

    name = sym->mangle();
    //printf("TypeStruct::toDecoBuffer('%s') = '%s'\n", toChars(), name);
//    if (name[0] == '_' && name[1] == 'D')
//	name += 2;
    //len = strlen(name);
    //buf->printf("%c%d%s", mangleChar[ty], len, name);
    buf->printf("%c%s", mangleChar[ty], name);
}

void TypeStruct::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    TemplateInstance *ti = sym->parent->isTemplateInstance();
    if (ti && ti->toAlias() == sym)
	buf->writestring(ti->toChars());
    else
	buf->writestring(sym->toChars());
}

Expression *TypeStruct::dotExp(Scope *sc, Expression *e, Identifier *ident)
{   unsigned offset;

    Expression *b;
    VarDeclaration *v;
    Dsymbol *s;
    DotVarExp *de;
    Declaration *d;

#if LOGDOTEXP
    printf("TypeStruct::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (!sym->members)
    {
	error(e->loc, "struct %s is forward referenced", sym->toChars());
	return new IntegerExp(e->loc, 0, Type::tint32);
    }

    if (ident == Id::tupleof)
    {
	/* Create a TupleExp
	 */
	Expressions *exps = new Expressions;
	exps->reserve(sym->fields.dim);
	for (size_t i = 0; i < sym->fields.dim; i++)
	{   VarDeclaration *v = (VarDeclaration *)sym->fields.data[i];
	    Expression *fe = new DotVarExp(e->loc, e, v);
	    exps->push(fe);
	}
	e = new TupleExp(e->loc, exps);
	e = e->semantic(sc);
	return e;
    }

    if (e->op == TOKdotexp)
    {	DotExp *de = (DotExp *)e;

	if (de->e1->op == TOKimport)
	{
	    ScopeExp *se = (ScopeExp *)de->e1;

	    s = se->sds->search(e->loc, ident, 0);
	    e = de->e1;
	    goto L1;
	}
    }

    s = sym->search(e->loc, ident, 0);
L1:
    if (!s)
    {
	//return getProperty(e->loc, ident);
	return Type::dotExp(sc, e, ident);
    }
    s = s->toAlias();

    v = s->isVarDeclaration();
    if (v && v->isConst())
    {	ExpInitializer *ei = v->getExpInitializer();

	if (ei)
	{   e = ei->exp->copy();	// need to copy it if it's a StringExp
	    e = e->semantic(sc);
	    return e;
	}
    }

    if (s->getType())
    {
	//return new DotTypeExp(e->loc, e, s);
	return new TypeExp(e->loc, s->getType());
    }

    EnumMember *em = s->isEnumMember();
    if (em)
    {
	assert(em->value);
	return em->value->copy();
    }

    TemplateMixin *tm = s->isTemplateMixin();
    if (tm)
    {	Expression *de;

	de = new DotExp(e->loc, e, new ScopeExp(e->loc, tm));
	de->type = e->type;
	return de;
    }

    TemplateDeclaration *td = s->isTemplateDeclaration();
    if (td)
    {
        e = new DotTemplateExp(e->loc, e, td);
        e->semantic(sc);
	return e;
    }

    TemplateInstance *ti = s->isTemplateInstance();
    if (ti)
    {	if (!ti->semanticdone)
	    ti->semantic(sc);
	s = ti->inst->toAlias();
	if (!s->isTemplateInstance())
	    goto L1;
	Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, ti));
	de->type = e->type;
	return de;
    }

    d = s->isDeclaration();
#ifdef DEBUG
    if (!d)
	printf("d = %s '%s'\n", s->kind(), s->toChars());
#endif
    assert(d);

    if (e->op == TOKtype)
    {	FuncDeclaration *fd = sc->func;

	if (d->needThis() && fd && fd->vthis)
	{
	    e = new DotVarExp(e->loc, new ThisExp(e->loc), d);
	    e = e->semantic(sc);
	    return e;
	}
	if (d->isTupleDeclaration())
	{
	    e = new TupleExp(e->loc, d->isTupleDeclaration());
	    e = e->semantic(sc);
	    return e;
	}
	return new VarExp(e->loc, d);
    }

    if (d->isDataseg())
    {
	// (e, d)
	VarExp *ve;

	accessCheck(e->loc, sc, e, d);
	ve = new VarExp(e->loc, d);
	e = new CommaExp(e->loc, e, ve);
	e->type = d->type;
	return e;
    }

    if (v)
    {
	if (v->toParent() != sym)
	    sym->error(e->loc, "'%s' is not a member", v->toChars());

	// *(&e + offset)
	accessCheck(e->loc, sc, e, d);
	b = new AddrExp(e->loc, e);
	b->type = e->type->pointerTo();
	b = new AddExp(e->loc, b, new IntegerExp(e->loc, v->offset, Type::tint32));
#if IN_LLVM
    // LLVMDC modification
    // this is *essential*
    ((AddExp*)b)->llvmFieldIndex = true;
#endif
	b->type = v->type->pointerTo();
	e = new PtrExp(e->loc, b);
	e->type = v->type;
	return e;
    }

    de = new DotVarExp(e->loc, e, d);
    return de->semantic(sc);
}

unsigned TypeStruct::memalign(unsigned salign)
{
    sym->size(0);		// give error for forward references
    return sym->structalign;
}

Expression *TypeStruct::defaultInit(Loc loc)
{   Symbol *s;
    Declaration *d;

#if LOGDEFAULTINIT
    printf("TypeStruct::defaultInit() '%s'\n", toChars());
#endif
    s = sym->toInitializer();
    d = new SymbolDeclaration(sym->loc, s, sym);
    assert(d);
    d->type = this;
    return new VarExp(sym->loc, d);
}

int TypeStruct::isZeroInit()
{
    return sym->zeroInit;
}

int TypeStruct::checkBoolean()
{
    return FALSE;
}

int TypeStruct::hasPointers()
{
    StructDeclaration *s = sym;

    sym->size(0);		// give error for forward references
    if (s->members)
    {
	for (size_t i = 0; i < s->members->dim; i++)
	{
	    Dsymbol *sm = (Dsymbol *)s->members->data[i];
	    if (sm->hasPointers())
		return TRUE;
	}
    }
    return FALSE;
}


/***************************** TypeClass *****************************/

TypeClass::TypeClass(ClassDeclaration *sym)
	: Type(Tclass, NULL)
{
    this->sym = sym;
}

char *TypeClass::toChars()
{
    return sym->toPrettyChars();
}

Type *TypeClass::syntaxCopy()
{
    return this;
}

Type *TypeClass::semantic(Loc loc, Scope *sc)
{
    //printf("TypeClass::semantic(%s)\n", sym->toChars());
    if (sym->scope)
	sym->semantic(sym->scope);
    return merge();
}

d_uns64 TypeClass::size(Loc loc)
{
    return PTRSIZE;
}

Dsymbol *TypeClass::toDsymbol(Scope *sc)
{
    return sym;
}

void TypeClass::toDecoBuffer(OutBuffer *buf)
{   unsigned len;
    char *name;

    name = sym->mangle();
//    if (name[0] == '_' && name[1] == 'D')
//	name += 2;
    //printf("TypeClass::toDecoBuffer('%s') = '%s'\n", toChars(), name);
    //len = strlen(name);
    //buf->printf("%c%d%s", mangleChar[ty], len, name);
    buf->printf("%c%s", mangleChar[ty], name);
}

void TypeClass::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(sym->toChars());
}

Expression *TypeClass::dotExp(Scope *sc, Expression *e, Identifier *ident)
{   unsigned offset;

    Expression *b;
    VarDeclaration *v;
    Dsymbol *s;
    DotVarExp *de;
    Declaration *d;

#if LOGDOTEXP
    printf("TypeClass::dotExp(e='%s', ident='%s')\n", e->toChars(), ident->toChars());
#endif

    if (e->op == TOKdotexp)
    {	DotExp *de = (DotExp *)e;

	if (de->e1->op == TOKimport)
	{
	    ScopeExp *se = (ScopeExp *)de->e1;

	    s = se->sds->search(e->loc, ident, 0);
	    e = de->e1;
	    goto L1;
	}
    }

    if (ident == Id::tupleof)
    {
	/* Create a TupleExp
	 */
	Expressions *exps = new Expressions;
	exps->reserve(sym->fields.dim);
	for (size_t i = 0; i < sym->fields.dim; i++)
	{   VarDeclaration *v = (VarDeclaration *)sym->fields.data[i];
	    Expression *fe = new DotVarExp(e->loc, e, v);
	    exps->push(fe);
	}
	e = new TupleExp(e->loc, exps);
	e = e->semantic(sc);
	return e;
    }

    s = sym->search(e->loc, ident, 0);
L1:
    if (!s)
    {
	// See if it's a base class
	ClassDeclaration *cbase;
	for (cbase = sym->baseClass; cbase; cbase = cbase->baseClass)
	{
	    if (cbase->ident->equals(ident))
	    {
		e = new DotTypeExp(0, e, cbase);
		return e;
	    }
	}

	if (ident == Id::classinfo)
	{
	    Type *t;

	    assert(ClassDeclaration::classinfo);
	    t = ClassDeclaration::classinfo->type;
	    if (e->op == TOKtype || e->op == TOKdottype)
	    {
		/* For type.classinfo, we know the classinfo
		 * at compile time.
		 */
		if (!sym->vclassinfo)
		    sym->vclassinfo = new ClassInfoDeclaration(sym);
		e = new VarExp(e->loc, sym->vclassinfo);
		e = e->addressOf(sc);
		e->type = t;	// do this so we don't get redundant dereference
	    }
	    else
	    {
        /* For class objects, the classinfo reference is the first
         * entry in the vtbl[]
         */
#if IN_LLVM

        Type* ct;
        if (sym->isInterfaceDeclaration()) {
            ct = t->pointerTo()->pointerTo()->pointerTo();
        }
        else {
            ct = t->pointerTo()->pointerTo();
        }

        e = e->castTo(sc, ct);
        e = new PtrExp(e->loc, e);
        e->type = ct->next;
        e = new PtrExp(e->loc, e);
        e->type = ct->next->next;

        if (sym->isInterfaceDeclaration())
        {
            if (sym->isCOMinterface())
            {   /* COM interface vtbl[]s are different in that the
             * first entry is always pointer to QueryInterface().
             * We can't get a .classinfo for it.
             */
            error(e->loc, "no .classinfo for COM interface objects");
            }
            /* For an interface, the first entry in the vtbl[]
             * is actually a pointer to an instance of struct Interface.
             * The first member of Interface is the .classinfo,
             * so add an extra pointer indirection.
             */
            e = new PtrExp(e->loc, e);
            e->type = ct->next->next->next;
        }

#else

		e = new PtrExp(e->loc, e);
		e->type = t->pointerTo();
		if (sym->isInterfaceDeclaration())
		{
		    if (sym->isCOMinterface())
		    {	/* COM interface vtbl[]s are different in that the
			 * first entry is always pointer to QueryInterface().
			 * We can't get a .classinfo for it.
			 */
			error(e->loc, "no .classinfo for COM interface objects");
		    }
		    /* For an interface, the first entry in the vtbl[]
		     * is actually a pointer to an instance of struct Interface.
		     * The first member of Interface is the .classinfo,
		     * so add an extra pointer indirection.
		     */
		    e->type = e->type->pointerTo();
		    e = new PtrExp(e->loc, e);
		    e->type = t->pointerTo();
		}
		e = new PtrExp(e->loc, e, t);

#endif
	    }
	    return e;
	}

	if (ident == Id::typeinfo)
	{
	    if (!global.params.useDeprecated)
		error(e->loc, ".typeinfo deprecated, use typeid(type)");
	    return getTypeInfo(sc);
	}
	if (ident == Id::outer && sym->vthis)
	{
	    s = sym->vthis;
	}
	else
	{
	    //return getProperty(e->loc, ident);
	    return Type::dotExp(sc, e, ident);
	}
    }
    s = s->toAlias();
    v = s->isVarDeclaration();
    if (v && v->isConst())
    {	ExpInitializer *ei = v->getExpInitializer();

	if (ei)
	{   e = ei->exp->copy();	// need to copy it if it's a StringExp
	    e = e->semantic(sc);
	    return e;
	}
    }

    if (s->getType())
    {
//	if (e->op == TOKtype)
	    return new TypeExp(e->loc, s->getType());
//	return new DotTypeExp(e->loc, e, s);
    }

    EnumMember *em = s->isEnumMember();
    if (em)
    {
	assert(em->value);
	return em->value->copy();
    }

    TemplateMixin *tm = s->isTemplateMixin();
    if (tm)
    {	Expression *de;

	de = new DotExp(e->loc, e, new ScopeExp(e->loc, tm));
	de->type = e->type;
	return de;
    }

    TemplateDeclaration *td = s->isTemplateDeclaration();
    if (td)
    {
        e = new DotTemplateExp(e->loc, e, td);
        e->semantic(sc);
	return e;
    }

    TemplateInstance *ti = s->isTemplateInstance();
    if (ti)
    {	if (!ti->semanticdone)
	    ti->semantic(sc);
	s = ti->inst->toAlias();
	if (!s->isTemplateInstance())
	    goto L1;
	Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, ti));
	de->type = e->type;
	return de;
    }

    d = s->isDeclaration();
    if (!d)
    {
	e->error("%s.%s is not a declaration", e->toChars(), ident->toChars());
	return new IntegerExp(e->loc, 1, Type::tint32);
    }

    if (e->op == TOKtype)
    {
	VarExp *ve;

	if (d->needThis() && (hasThis(sc) || !d->isFuncDeclaration()))
	{
	    if (sc->func)
	    {
		ClassDeclaration *thiscd;
		thiscd = sc->func->toParent()->isClassDeclaration();

		if (thiscd)
		{
		    ClassDeclaration *cd = e->type->isClassHandle();

		    if (cd == thiscd)
		    {
			e = new ThisExp(e->loc);
			e = new DotTypeExp(e->loc, e, cd);
			de = new DotVarExp(e->loc, e, d);
			e = de->semantic(sc);
			return e;
		    }
		    else if ((!cd || !cd->isBaseOf(thiscd, NULL)) &&
			     !d->isFuncDeclaration())
			e->error("'this' is required, but %s is not a base class of %s", e->type->toChars(), thiscd->toChars());
		}
	    }

	    de = new DotVarExp(e->loc, new ThisExp(e->loc), d);
	    e = de->semantic(sc);
	    return e;
	}
	else if (d->isTupleDeclaration())
	{
	    e = new TupleExp(e->loc, d->isTupleDeclaration());
	    e = e->semantic(sc);
	    return e;
	}
	else
	    ve = new VarExp(e->loc, d);
	return ve;
    }

    if (d->isDataseg())
    {
	// (e, d)
	VarExp *ve;

	accessCheck(e->loc, sc, e, d);
	ve = new VarExp(e->loc, d);
	e = new CommaExp(e->loc, e, ve);
	e->type = d->type;
	return e;
    }

    if (d->parent && d->toParent()->isModule())
    {
	// (e, d)
	VarExp *ve;

	ve = new VarExp(e->loc, d);
	e = new CommaExp(e->loc, e, ve);
	e->type = d->type;
	return e;
    }

    de = new DotVarExp(e->loc, e, d);
    return de->semantic(sc);
}

ClassDeclaration *TypeClass::isClassHandle()
{
    return sym;
}

int TypeClass::isauto()
{
    return sym->isauto;
}

int TypeClass::isBaseOf(Type *t, int *poffset)
{
    if (t->ty == Tclass)
    {   ClassDeclaration *cd;

	cd   = ((TypeClass *)t)->sym;
	if (sym->isBaseOf(cd, poffset))
	    return 1;
    }
    return 0;
}

MATCH TypeClass::implicitConvTo(Type *to)
{
    //printf("TypeClass::implicitConvTo('%s')\n", to->toChars());
    if (this == to)
	return MATCHexact;

    ClassDeclaration *cdto = to->isClassHandle();
    if (cdto && cdto->isBaseOf(sym, NULL))
    {	//printf("is base\n");
	return MATCHconvert;
    }

    if (global.params.Dversion == 1)
    {
	// Allow conversion to (void *)
	if (to->ty == Tpointer && to->next->ty == Tvoid)
	    return MATCHconvert;
    }

    return MATCHnomatch;
}

Expression *TypeClass::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeClass::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeClass::isZeroInit()
{
    return 1;
}

int TypeClass::checkBoolean()
{
    return TRUE;
}

int TypeClass::hasPointers()
{
    return TRUE;
}

/***************************** TypeTuple *****************************/

TypeTuple::TypeTuple(Arguments *arguments)
    : Type(Ttuple, NULL)
{
    //printf("TypeTuple(this = %p)\n", this);
    this->arguments = arguments;
#ifdef DEBUG
    if (arguments)
    {
	for (size_t i = 0; i < arguments->dim; i++)
	{
	    Argument *arg = (Argument *)arguments->data[i];
	    assert(arg && arg->type);
	}
    }
#endif
}

/****************
 * Form TypeTuple from the types of the expressions.
 * Assume exps[] is already tuple expanded.
 */

TypeTuple::TypeTuple(Expressions *exps)
    : Type(Ttuple, NULL)
{
    Arguments *arguments = new Arguments;
    if (exps)
    {
	arguments->setDim(exps->dim);
	for (size_t i = 0; i < exps->dim; i++)
	{   Expression *e = (Expression *)exps->data[i];
	    if (e->type->ty == Ttuple)
		e->error("cannot form tuple of tuples");
	    Argument *arg = new Argument(STCin, e->type, NULL, NULL);
	    arguments->data[i] = (void *)arg;
	}
    }
    this->arguments = arguments;
}

Type *TypeTuple::syntaxCopy()
{
    Arguments *args = Argument::arraySyntaxCopy(arguments);
    Type *t = new TypeTuple(args);
    return t;
}

Type *TypeTuple::semantic(Loc loc, Scope *sc)
{
    //printf("TypeTuple::semantic(this = %p)\n", this);
    if (!deco)
	deco = merge()->deco;

    /* Don't return merge(), because a tuple with one type has the
     * same deco as that type.
     */
    return this;
}

int TypeTuple::equals(Object *o)
{   Type *t;

    t = (Type *)o;
    //printf("TypeTuple::equals(%s, %s)\n", toChars(), t->toChars());
    if (this == t)
    {
	return 1;
    }
    if (t->ty == Ttuple)
    {	TypeTuple *tt = (TypeTuple *)t;

	if (arguments->dim == tt->arguments->dim)
	{
	    for (size_t i = 0; i < tt->arguments->dim; i++)
	    {   Argument *arg1 = (Argument *)arguments->data[i];
		Argument *arg2 = (Argument *)tt->arguments->data[i];

		if (!arg1->type->equals(arg2->type))
		    return 0;
	    }
	    return 1;
	}
    }
    return 0;
}

Type *TypeTuple::reliesOnTident()
{
    if (arguments)
    {
	for (size_t i = 0; i < arguments->dim; i++)
	{
	    Argument *arg = (Argument *)arguments->data[i];
	    Type *t = arg->type->reliesOnTident();
	    if (t)
		return t;
	}
    }
    return NULL;
}

void TypeTuple::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    Argument::argsToCBuffer(buf, hgs, arguments, 0);
}

void TypeTuple::toDecoBuffer(OutBuffer *buf)
{
    //printf("TypeTuple::toDecoBuffer() this = %p\n", this);
    OutBuffer buf2;
    Argument::argsToDecoBuffer(&buf2, arguments);
    unsigned len = buf2.offset;
    buf->printf("%c%d%.*s", mangleChar[ty], len, len, (char *)buf2.extractData());
}

Expression *TypeTuple::getProperty(Loc loc, Identifier *ident)
{   Expression *e;

#if LOGDOTEXP
    printf("TypeTuple::getProperty(type = '%s', ident = '%s')\n", toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	e = new IntegerExp(loc, arguments->dim, Type::tsize_t);
    }
    else
    {
	error(loc, "no property '%s' for tuple '%s'", ident->toChars(), toChars());
	e = new IntegerExp(loc, 1, Type::tint32);
    }
    return e;
}

/***************************** TypeSlice *****************************/

/* This is so we can slice a TypeTuple */

TypeSlice::TypeSlice(Type *next, Expression *lwr, Expression *upr)
    : Type(Tslice, next)
{
    //printf("TypeSlice[%s .. %s]\n", lwr->toChars(), upr->toChars());
    this->lwr = lwr;
    this->upr = upr;
}

Type *TypeSlice::syntaxCopy()
{
    Type *t = new TypeSlice(next->syntaxCopy(), lwr->syntaxCopy(), upr->syntaxCopy());
    return t;
}

Type *TypeSlice::semantic(Loc loc, Scope *sc)
{
    //printf("TypeSlice::semantic() %s\n", toChars());
    next = next->semantic(loc, sc);
    //printf("next: %s\n", next->toChars());

    Type *tbn = next->toBasetype();
    if (tbn->ty != Ttuple)
    {	error(loc, "can only slice tuple types, not %s", tbn->toChars());
	return Type::terror;
    }
    TypeTuple *tt = (TypeTuple *)tbn;

    lwr = semanticLength(sc, tbn, lwr);
    lwr = lwr->optimize(WANTvalue);
    uinteger_t i1 = lwr->toUInteger();

    upr = semanticLength(sc, tbn, upr);
    upr = upr->optimize(WANTvalue);
    uinteger_t i2 = upr->toUInteger();

    if (!(i1 <= i2 && i2 <= tt->arguments->dim))
    {	error(loc, "slice [%ju..%ju] is out of range of [0..%u]", i1, i2, tt->arguments->dim);
	return Type::terror;
    }

    Arguments *args = new Arguments;
    args->reserve(i2 - i1);
    for (size_t i = i1; i < i2; i++)
    {	Argument *arg = (Argument *)tt->arguments->data[i];
	args->push(arg);
    }

    return new TypeTuple(args);
}

void TypeSlice::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    next->resolve(loc, sc, pe, pt, ps);
    if (*pe)
    {	// It's really a slice expression
	Expression *e;
	e = new SliceExp(loc, *pe, lwr, upr);
	*pe = e;
    }
    else if (*ps)
    {	Dsymbol *s = *ps;
	TupleDeclaration *td = s->isTupleDeclaration();
	if (td)
	{
	    /* It's a slice of a TupleDeclaration
	     */
	    ScopeDsymbol *sym = new ArrayScopeSymbol(td);
	    sym->parent = sc->scopesym;
	    sc = sc->push(sym);

	    lwr = lwr->semantic(sc);
	    lwr = lwr->optimize(WANTvalue);
	    uinteger_t i1 = lwr->toUInteger();

	    upr = upr->semantic(sc);
	    upr = upr->optimize(WANTvalue);
	    uinteger_t i2 = upr->toUInteger();

	    sc = sc->pop();

	    if (!(i1 <= i2 && i2 <= td->objects->dim))
	    {   error(loc, "slice [%ju..%ju] is out of range of [0..%u]", i1, i2, td->objects->dim);
		goto Ldefault;
	    }

	    if (i1 == 0 && i2 == td->objects->dim)
	    {
		*ps = td;
		return;
	    }

	    /* Create a new TupleDeclaration which
	     * is a slice [i1..i2] out of the old one.
	     */
	    Objects *objects = new Objects;
	    objects->setDim(i2 - i1);
	    for (size_t i = 0; i < objects->dim; i++)
	    {
		objects->data[i] = td->objects->data[(size_t)i1 + i];
	    }

	    TupleDeclaration *tds = new TupleDeclaration(loc, td->ident, objects);
	    *ps = tds;
	}
	else
	    goto Ldefault;
    }
    else
    {
     Ldefault:
	Type::resolve(loc, sc, pe, pt, ps);
    }
}

void TypeSlice::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);

    buf->printf("[%s .. ", lwr->toChars());
    buf->printf("%s]", upr->toChars());
}

/***************************** Argument *****************************/

Argument::Argument(unsigned storageClass, Type *type, Identifier *ident, Expression *defaultArg)
{
    this->type = type;
    this->ident = ident;
    this->storageClass = storageClass;
    this->defaultArg = defaultArg;
    this->llvmByVal = false;
}

Argument *Argument::syntaxCopy()
{
    Argument *a = new Argument(storageClass,
		type ? type->syntaxCopy() : NULL,
		ident,
		defaultArg ? defaultArg->syntaxCopy() : NULL);
    a->llvmByVal = llvmByVal;
    return a;
}

Arguments *Argument::arraySyntaxCopy(Arguments *args)
{   Arguments *a = NULL;

    if (args)
    {
	a = new Arguments();
	a->setDim(args->dim);
	for (size_t i = 0; i < a->dim; i++)
	{   Argument *arg = (Argument *)args->data[i];

	    arg = arg->syntaxCopy();
	    a->data[i] = (void *)arg;
	}
    }
    return a;
}

char *Argument::argsTypesToChars(Arguments *args, int varargs)
{   OutBuffer *buf;

    buf = new OutBuffer();

    buf->writeByte('(');
    if (args)
    {	int i;
	OutBuffer argbuf;
	HdrGenState hgs;

	for (i = 0; i < args->dim; i++)
	{   Argument *arg;

	    if (i)
		buf->writeByte(',');
	    arg = (Argument *)args->data[i];
	    argbuf.reset();
	    arg->type->toCBuffer2(&argbuf, &hgs, 0);
	    buf->write(&argbuf);
	}
	if (varargs)
	{
	    if (i && varargs == 1)
		buf->writeByte(',');
	    buf->writestring("...");
	}
    }
    buf->writeByte(')');

    return buf->toChars();
}

void Argument::argsToCBuffer(OutBuffer *buf, HdrGenState *hgs, Arguments *arguments, int varargs)
{
    buf->writeByte('(');
    if (arguments)
    {	int i;
	OutBuffer argbuf;

	for (i = 0; i < arguments->dim; i++)
	{   Argument *arg;

	    if (i)
		buf->writestring(", ");
	    arg = (Argument *)arguments->data[i];
	    if (arg->storageClass & STCout)
		buf->writestring("out ");
	    else if (arg->storageClass & STCref)
		buf->writestring((global.params.Dversion == 1)
			? (char *)"inout " : (char *)"ref ");
	    else if (arg->storageClass & STClazy)
		buf->writestring("lazy ");
	    argbuf.reset();
	    arg->type->toCBuffer(&argbuf, arg->ident, hgs);
	    if (arg->defaultArg)
	    {
		argbuf.writestring(" = ");
		arg->defaultArg->toCBuffer(&argbuf, hgs);
	    }
	    buf->write(&argbuf);
	}
	if (varargs)
	{
	    if (i && varargs == 1)
		buf->writeByte(',');
	    buf->writestring("...");
	}
    }
    buf->writeByte(')');
}


void Argument::argsToDecoBuffer(OutBuffer *buf, Arguments *arguments)
{
    //printf("Argument::argsToDecoBuffer()\n");

    // Write argument types
    if (arguments)
    {
	size_t dim = Argument::dim(arguments);
	for (size_t i = 0; i < dim; i++)
	{
	    Argument *arg = Argument::getNth(arguments, i);
	    arg->toDecoBuffer(buf);
	}
    }
}

/****************************************************
 * Determine if parameter is a lazy array of delegates.
 * If so, return the return type of those delegates.
 * If not, return NULL.
 */

Type *Argument::isLazyArray()
{
//    if (inout == Lazy)
    {
	Type *tb = type->toBasetype();
	if (tb->ty == Tsarray || tb->ty == Tarray)
	{
	    Type *tel = tb->next->toBasetype();
	    if (tel->ty == Tdelegate)
	    {
		TypeDelegate *td = (TypeDelegate *)tel;
		TypeFunction *tf = (TypeFunction *)td->next;

		if (!tf->varargs && Argument::dim(tf->parameters) == 0)
		{
		    return tf->next;	// return type of delegate
		}
	    }
	}
    }
    return NULL;
}

void Argument::toDecoBuffer(OutBuffer *buf)
{
    switch (storageClass & (STCin | STCout | STCref | STClazy))
    {   case 0:
	case STCin:
	    break;
	case STCout:
	    buf->writeByte('J');
	    break;
	case STCref:
	    buf->writeByte('K');
	    break;
	case STClazy:
	    buf->writeByte('L');
	    break;
	default:
#ifdef DEBUG
	    halt();
#endif
	    assert(0);
    }
    type->toDecoBuffer(buf);
}

/***************************************
 * Determine number of arguments, folding in tuples.
 */

size_t Argument::dim(Arguments *args)
{
    size_t n = 0;
    if (args)
    {
	for (size_t i = 0; i < args->dim; i++)
	{   Argument *arg = (Argument *)args->data[i];
	    Type *t = arg->type->toBasetype();

	    if (t->ty == Ttuple)
	    {   TypeTuple *tu = (TypeTuple *)t;
		n += dim(tu->arguments);
	    }
	    else
		n++;
	}
    }
    return n;
}

/***************************************
 * Get nth Argument, folding in tuples.
 * Returns:
 *	Argument*	nth Argument
 *	NULL		not found, *pn gets incremented by the number
 *			of Arguments
 */

Argument *Argument::getNth(Arguments *args, size_t nth, size_t *pn)
{
    if (!args)
	return NULL;

    size_t n = 0;
    for (size_t i = 0; i < args->dim; i++)
    {   Argument *arg = (Argument *)args->data[i];
	Type *t = arg->type->toBasetype();

	if (t->ty == Ttuple)
	{   TypeTuple *tu = (TypeTuple *)t;
	    arg = getNth(tu->arguments, nth - n, &n);
	    if (arg)
		return arg;
	}
	else if (n == nth)
	    return arg;
	else
	    n++;
    }

    if (pn)
	*pn += n;
    return NULL;
}