view dmd2/mtype.c @ 1083:c1e9f612e2e2

Fix for dual operand form of fistp, also make reg ST(0) explicit and fix lindquists previous code that allowed dual operand form of fstp but dissallowed the single operand form accidently
author Kelly Wilson <wilsonk cpsc.ucalgary.ca>
date Tue, 10 Mar 2009 06:23:26 -0600
parents 4d366a75d95f
children 442ab244c455
line wrap: on
line source


// Compiler implementation of the D programming language
// Copyright (c) 1999-2008 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.

#define __USE_ISOC99 1		// so signbit() gets defined
#include <cmath>

#include <stdio.h>
#include <assert.h>
#include <float.h>

#ifdef __DMC__
#include <fp.h>
#endif

#if _MSC_VER
#include <malloc.h>
#include <complex>
#include <limits>
#elif __DMC__
#include <complex.h>
#elif __MINGW32__
#include <malloc.h>
#else
//#define signbit 56
#endif

#if __APPLE__
#include <cmath>
static double zero = 0;
#elif __MINGW32__
#include <cmath>
static double zero = 0;
#elif __GNUC__
#include <cmath>
#include <bits/nan.h>
#include <bits/mathdef.h>
static double zero = 0;
#endif

#include "mem.h"

#include "dsymbol.h"
#include "mtype.h"
#include "scope.h"
#include "init.h"
#include "expression.h"
#include "attrib.h"
#include "declaration.h"
#include "template.h"
#include "id.h"
#include "enum.h"
#include "import.h"
#include "aggregate.h"
#include "hdrgen.h"

#include "gen/tollvm.h"

FuncDeclaration *hasThis(Scope *sc);


#define LOGDOTEXP	0	// log ::dotExp()
#define LOGDEFAULTINIT	0	// log ::defaultInit()

// Allow implicit conversion of T[] to T*
#define IMPLICIT_ARRAY_TO_PTR	global.params.useDeprecated

/* These have default values for 32 bit code, they get
 * adjusted for 64 bit code.
 */

int PTRSIZE = 4;
#if IN_LLVM
int REALSIZE = 8;
int REALPAD = 0;
#elif TARGET_LINUX
int REALSIZE = 12;
int REALPAD = 2;
#else
int REALSIZE = 10;
int REALPAD = 0;
#endif
int Tsize_t = Tuns32;
int Tptrdiff_t = Tint32;

/***************************** Type *****************************/

ClassDeclaration *Type::typeinfo;
ClassDeclaration *Type::typeinfoclass;
ClassDeclaration *Type::typeinfointerface;
ClassDeclaration *Type::typeinfostruct;
ClassDeclaration *Type::typeinfotypedef;
ClassDeclaration *Type::typeinfopointer;
ClassDeclaration *Type::typeinfoarray;
ClassDeclaration *Type::typeinfostaticarray;
ClassDeclaration *Type::typeinfoassociativearray;
ClassDeclaration *Type::typeinfoenum;
ClassDeclaration *Type::typeinfofunction;
ClassDeclaration *Type::typeinfodelegate;
ClassDeclaration *Type::typeinfotypelist;
ClassDeclaration *Type::typeinfoconst;
ClassDeclaration *Type::typeinfoinvariant;

Type *Type::tvoidptr;
Type *Type::basic[TMAX];
unsigned char Type::mangleChar[TMAX];
unsigned char Type::sizeTy[TMAX];
StringTable Type::stringtable;


Type::Type(TY ty)
{
    this->ty = ty;
    this->mod = 0;
    this->deco = NULL;
#if DMDV2
    this->cto = NULL;
    this->ito = NULL;
#endif
    this->pto = NULL;
    this->rto = NULL;
    this->arrayof = NULL;
    this->vtinfo = NULL;
    this->ctype = NULL;
}

Type *Type::syntaxCopy()
{
    print();
    fprintf(stdmsg, "ty = %d\n", ty);
    assert(0);
    return this;
}

int Type::equals(Object *o)
{   Type *t;

    t = (Type *)o;
    //printf("Type::equals(%s, %s)\n", toChars(), t->toChars());
    if (this == o ||
	(t && deco == t->deco) &&		// deco strings are unique
	 deco != NULL)				// and semantic() has been run
    {
	//printf("deco = '%s', t->deco = '%s'\n", deco, t->deco);
	return 1;
    }
    //if (deco && t && t->deco) printf("deco = '%s', t->deco = '%s'\n", deco, t->deco);
    return 0;
}

char Type::needThisPrefix()
{
    return 'M';		// name mangling prefix for functions needing 'this'
}

void Type::init()
{   int i;
    int j;

    Lexer::initKeywords();

    for (i = 0; i < TMAX; i++)
	sizeTy[i] = sizeof(TypeBasic);
    sizeTy[Tsarray] = sizeof(TypeSArray);
    sizeTy[Tarray] = sizeof(TypeDArray);
    sizeTy[Taarray] = sizeof(TypeAArray);
    sizeTy[Tpointer] = sizeof(TypePointer);
    sizeTy[Treference] = sizeof(TypeReference);
    sizeTy[Tfunction] = sizeof(TypeFunction);
    sizeTy[Tdelegate] = sizeof(TypeDelegate);
    sizeTy[Tident] = sizeof(TypeIdentifier);
    sizeTy[Tinstance] = sizeof(TypeInstance);
    sizeTy[Ttypeof] = sizeof(TypeTypeof);
    sizeTy[Tenum] = sizeof(TypeEnum);
    sizeTy[Ttypedef] = sizeof(TypeTypedef);
    sizeTy[Tstruct] = sizeof(TypeStruct);
    sizeTy[Tclass] = sizeof(TypeClass);
    sizeTy[Ttuple] = sizeof(TypeTuple);
    sizeTy[Tslice] = sizeof(TypeSlice);
    sizeTy[Treturn] = sizeof(TypeReturn);

    mangleChar[Tarray] = 'A';
    mangleChar[Tsarray] = 'G';
    mangleChar[Taarray] = 'H';
    mangleChar[Tpointer] = 'P';
    mangleChar[Treference] = 'R';
    mangleChar[Tfunction] = 'F';
    mangleChar[Tident] = 'I';
    mangleChar[Tclass] = 'C';
    mangleChar[Tstruct] = 'S';
    mangleChar[Tenum] = 'E';
    mangleChar[Ttypedef] = 'T';
    mangleChar[Tdelegate] = 'D';

    mangleChar[Tnone] = 'n';
    mangleChar[Tvoid] = 'v';
    mangleChar[Tint8] = 'g';
    mangleChar[Tuns8] = 'h';
    mangleChar[Tint16] = 's';
    mangleChar[Tuns16] = 't';
    mangleChar[Tint32] = 'i';
    mangleChar[Tuns32] = 'k';
    mangleChar[Tint64] = 'l';
    mangleChar[Tuns64] = 'm';
    mangleChar[Tfloat32] = 'f';
    mangleChar[Tfloat64] = 'd';
    mangleChar[Tfloat80] = 'e';

    mangleChar[Timaginary32] = 'o';
    mangleChar[Timaginary64] = 'p';
    mangleChar[Timaginary80] = 'j';
    mangleChar[Tcomplex32] = 'q';
    mangleChar[Tcomplex64] = 'r';
    mangleChar[Tcomplex80] = 'c';

    mangleChar[Tbool] = 'b';
    mangleChar[Tascii] = 'a';
    mangleChar[Twchar] = 'u';
    mangleChar[Tdchar] = 'w';

    mangleChar[Tbit] = '@';
    mangleChar[Tinstance] = '@';
    mangleChar[Terror] = '@';
    mangleChar[Ttypeof] = '@';
    mangleChar[Ttuple] = 'B';
    mangleChar[Tslice] = '@';
    mangleChar[Treturn] = '@';

    for (i = 0; i < TMAX; i++)
    {	if (!mangleChar[i])
	    fprintf(stdmsg, "ty = %d\n", i);
	assert(mangleChar[i]);
    }

    // Set basic types
    static TY basetab[] =
	{ Tvoid, Tint8, Tuns8, Tint16, Tuns16, Tint32, Tuns32, Tint64, Tuns64,
	  Tfloat32, Tfloat64, Tfloat80,
	  Timaginary32, Timaginary64, Timaginary80,
	  Tcomplex32, Tcomplex64, Tcomplex80,
	  Tbool,
	  Tascii, Twchar, Tdchar };

    for (i = 0; i < sizeof(basetab) / sizeof(basetab[0]); i++)
    {	Type *t = new TypeBasic(basetab[i]);
	t = t->merge();
	basic[basetab[i]] = t;
    }
    basic[Terror] = basic[Tint32];

    tvoidptr = tvoid->pointerTo();

    // set size_t / ptrdiff_t types and pointer size
    if (global.params.is64bit)
    {
	Tsize_t = Tuns64;
	Tptrdiff_t = Tint64;
	PTRSIZE = 8;
    }
    else
    {
	Tsize_t = Tuns32;
	Tptrdiff_t = Tint32;
	PTRSIZE = 4;
    }

    // set real size and padding
    if (global.params.cpu == ARCHx86)
    {
	REALSIZE = 12;
	REALPAD = 2;
    }
    else if (global.params.cpu == ARCHx86_64)
    {
	REALSIZE = 16;
	REALPAD = 6;
    }
    else
    {
	REALSIZE = 8;
	REALPAD = 0;
    }
}

d_uns64 Type::size()
{
    return size(0);
}

d_uns64 Type::size(Loc loc)
{
    error(loc, "no size for type %s", toChars());
    return 1;
}

unsigned Type::alignsize()
{
    return size(0);
}

Type *Type::semantic(Loc loc, Scope *sc)
{
    return merge();
}

/*******************************
 * Determine if converting 'this' to 'to' is an identity operation,
 * a conversion to const operation, or the types aren't the same.
 * Returns:
 *	MATCHequal	'this' == 'to'
 *	MATCHconst	'to' is const
 *	MATCHnomatch	conversion to mutable or invariant
 */

MATCH Type::constConv(Type *to)
{
    if (equals(to))
	return MATCHexact;
    if (ty == to->ty && to->mod == MODconst)
	return MATCHconst;
    return MATCHnomatch;
}

Type *Type::constOf()
{
    //printf("Type::constOf() %p %s\n", this, toChars());
    if (isConst())
	return this;
    if (cto)
	return cto;
    Type *t = makeConst();
    t = t->merge();
    cto = t;
    if (ito)
	ito->cto = t;
    //if (t->nextOf()) assert(t->nextOf()->isConst());
    //printf("-Type::constOf() %p %s\n", t, toChars());
    return t;
}

Type *Type::invariantOf()
{
    //printf("Type::invariantOf() %p %s\n", this, toChars());
    if (isInvariant())
    {
	return this;
    }
    if (ito)
    {
	//if (!ito->isInvariant()) printf("\tito is %p %s\n", ito, ito->toChars());
	assert(ito->isInvariant());
	return ito;
    }
    Type *t = makeInvariant();
    t = t->merge();
    ito = t;
    if (cto)
	cto->ito = t;
#if 0 // fails for function types
    if (t->nextOf() && !t->nextOf()->isInvariant())
    {
	assert(0);
    }
#endif
    //printf("\t%p\n", t);
    return t;
}

Type *Type::mutableOf()
{
    //printf("Type::mutableOf() %p, %s\n", this, toChars());
    Type *t = this;
    if (isConst())
    {	t = cto;
	assert(!t || t->isMutable());
    }
    else if (isInvariant())
    {	t = ito;
	assert(!t || t->isMutable());
    }
    if (!t)
    {
	unsigned sz = sizeTy[ty];
	t = (Type *)mem.malloc(sz);
	memcpy(t, this, sz);
	t->mod = 0;
	t->deco = NULL;
	t->arrayof = NULL;
	t->pto = NULL;
	t->rto = NULL;
	t->cto = NULL;
	t->ito = NULL;
	t->vtinfo = NULL;
	if (ty == Tsarray)
	{   TypeSArray *ta = (TypeSArray *)t;
	    //ta->next = ta->next->mutableOf();
	}
	t = t->merge();
	if (isConst())
	{   cto = t;
	    t->cto = this;
	    if (ito)
		ito->cto = this;
	}
	else if (isInvariant())
	{   ito = t;
	    t->ito = this;
	    if (cto)
		cto->ito = this;
	}
    }
    return t;
}

Type *Type::makeConst()
{
    //printf("Type::makeConst() %p, %s\n", this, toChars());
    if (cto)
	return cto;
    unsigned sz = sizeTy[ty];
    Type *t = (Type *)mem.malloc(sz);
    memcpy(t, this, sz);
    t->mod = MODconst;
    t->deco = NULL;
    t->arrayof = NULL;
    t->pto = NULL;
    t->rto = NULL;
    t->cto = NULL;
    t->ito = NULL;
    t->vtinfo = NULL;
    //printf("-Type::makeConst() %p, %s\n", t, toChars());
    return t;
}

Type *Type::makeInvariant()
{
    if (ito)
	return ito;
    unsigned sz = sizeTy[ty];
    Type *t = (Type *)mem.malloc(sz);
    memcpy(t, this, sz);
    t->mod = MODinvariant;
    t->deco = NULL;
    t->arrayof = NULL;
    t->pto = NULL;
    t->rto = NULL;
    t->cto = NULL;
    t->ito = NULL;
    t->vtinfo = NULL;
    return t;
}

/**************************
 * Return type with the top level of it being mutable.
 */
Type *Type::toHeadMutable()
{
    if (!mod)
	return this;
    return mutableOf();
}

Type *Type::pointerTo()
{
    if (!pto)
    {	Type *t;

	t = new TypePointer(this);
	pto = t->merge();
    }
    return pto;
}

Type *Type::referenceTo()
{
    if (!rto)
    {	Type *t;

	t = new TypeReference(this);
	rto = t->merge();
    }
    return rto;
}

Type *Type::arrayOf()
{
    if (!arrayof)
    {	Type *t;

	t = new TypeDArray(this);
	arrayof = t->merge();
    }
    return arrayof;
}

Dsymbol *Type::toDsymbol(Scope *sc)
{
    return NULL;
}

/*******************************
 * If this is a shell around another type,
 * get that other type.
 */

Type *Type::toBasetype()
{
    return this;
}

/********************************
 * Name mangling.
 * Input:
 *	flag	0x100	do not do const/invariant
 */

void Type::toDecoBuffer(OutBuffer *buf, int flag)
{
    if (flag != mod && flag != 0x100)
    {
	if (mod & MODshared)
	    buf->writeByte('O');

	if (mod & MODconst)
	    buf->writeByte('x');
	else if (mod & MODinvariant)
	    buf->writeByte('y');

	// Cannot be both const and invariant
	assert((mod & (MODconst | MODinvariant)) != (MODconst | MODinvariant));
    }
    buf->writeByte(mangleChar[ty]);
}

/********************************
 * For pretty-printing a type.
 */

char *Type::toChars()
{   OutBuffer *buf;
    HdrGenState hgs;

    buf = new OutBuffer();
    toCBuffer(buf, NULL, &hgs);
    return buf->toChars();
}

void Type::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
    toCBuffer2(buf, hgs, 0);
    if (ident)
    {	buf->writeByte(' ');
	buf->writestring(ident->toChars());
    }
}

void Type::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(toChars());
}

void Type::toCBuffer3(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	const char *p;

	if (mod & MODshared)
	    buf->writestring("shared(");
	switch (this->mod & (MODconst | MODinvariant))
	{
	    case 0:
		toCBuffer2(buf, hgs, this->mod);
		break;
	    case MODconst:
		p = "const(";
		goto L1;
	    case MODinvariant:
		p = "invariant(";
	    L1:	buf->writestring(p);
		toCBuffer2(buf, hgs, this->mod);
		buf->writeByte(')');
		break;
	    default:
		assert(0);
	}
	if (mod & MODshared)
	    buf->writeByte(')');
    }
}

/************************************
 */

Type *Type::merge()
{   Type *t;

    //printf("merge(%s)\n", toChars());
    t = this;
    assert(t);
    if (!deco)
    {
	OutBuffer buf;
	StringValue *sv;

	//if (next)
	    //next = next->merge();
	toDecoBuffer(&buf);
	sv = stringtable.update((char *)buf.data, buf.offset);
	if (sv->ptrvalue)
	{   t = (Type *) sv->ptrvalue;
	    assert(t->deco);
	    //printf("old value, deco = '%s' %p\n", t->deco, t->deco);
	}
	else
	{
	    sv->ptrvalue = this;
	    deco = sv->lstring.string;
	    //printf("new value, deco = '%s' %p\n", t->deco, t->deco);
	}
    }
    return t;
}

int Type::isintegral()
{
    return FALSE;
}

int Type::isfloating()
{
    return FALSE;
}

int Type::isreal()
{
    return FALSE;
}

int Type::isimaginary()
{
    return FALSE;
}

int Type::iscomplex()
{
    return FALSE;
}

int Type::isscalar()
{
    return FALSE;
}

int Type::isunsigned()
{
    return FALSE;
}

ClassDeclaration *Type::isClassHandle()
{
    return NULL;
}

int Type::isauto()
{
    return FALSE;
}

int Type::isString()
{
    return FALSE;
}

/**************************
 * Given:
 *	T a, b;
 * Can we assign:
 *	a = b;
 * ?
 */
int Type::isAssignable()
{
    return TRUE;
}

int Type::checkBoolean()
{
    return isscalar();
}

/*********************************
 * Check type to see if it is based on a deprecated symbol.
 */

void Type::checkDeprecated(Loc loc, Scope *sc)
{
    Dsymbol *s = toDsymbol(sc);

    if (s)
	s->checkDeprecated(loc, sc);
}


Expression *Type::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("Type::defaultInit() '%s'\n", toChars());
#endif
    return NULL;
}

int Type::isZeroInit()
{
    return 0;		// assume not
}

int Type::isBaseOf(Type *t, int *poffset)
{
    return 0;		// assume not
}

/********************************
 * Determine if 'this' can be implicitly converted
 * to type 'to'.
 * Returns:
 *	0	can't convert
 *	1	can convert using implicit conversions
 *	2	this and to are the same type
 */

MATCH Type::implicitConvTo(Type *to)
{
    //printf("Type::implicitConvTo(this=%p, to=%p)\n", this, to);
    if (this == to)
	return MATCHexact;
    return MATCHnomatch;
}

Expression *Type::getProperty(Loc loc, Identifier *ident)
{   Expression *e;

#if LOGDOTEXP
    printf("Type::getProperty(type = '%s', ident = '%s')\n", toChars(), ident->toChars());
#endif
    if (ident == Id::__sizeof)
    {
	e = new IntegerExp(loc, size(loc), Type::tsize_t);
    }
    else if (ident == Id::size)
    {
	error(loc, ".size property should be replaced with .sizeof");
	e = new IntegerExp(loc, size(loc), Type::tsize_t);
    }
    else if (ident == Id::alignof)
    {
	e = new IntegerExp(loc, alignsize(), Type::tsize_t);
    }
    else if (ident == Id::typeinfo)
    {
	if (!global.params.useDeprecated)
	    error(loc, ".typeinfo deprecated, use typeid(type)");
	e = getTypeInfo(NULL);
    }
    else if (ident == Id::init)
    {
	if (ty == Tvoid)
	    error(loc, "void does not have an initializer");
	e = defaultInit(loc);
    }
    else if (ident == Id::mangleof)
    {
	assert(deco);
	e = new StringExp(loc, deco, strlen(deco), 'c');
	Scope sc;
	e = e->semantic(&sc);
    }
    else if (ident == Id::stringof)
    {	char *s = toChars();
	e = new StringExp(loc, s, strlen(s), 'c');
	Scope sc;
	e = e->semantic(&sc);
    }
    else
    {
	error(loc, "no property '%s' for type '%s'", ident->toChars(), toChars());
	e = new IntegerExp(loc, 1, Type::tint32);
    }
    return e;
}

Expression *Type::dotExp(Scope *sc, Expression *e, Identifier *ident)
{   VarDeclaration *v = NULL;

#if LOGDOTEXP
    printf("Type::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (e->op == TOKdotvar)
    {
	DotVarExp *dv = (DotVarExp *)e;
	v = dv->var->isVarDeclaration();
    }
    else if (e->op == TOKvar)
    {
	VarExp *ve = (VarExp *)e;
	v = ve->var->isVarDeclaration();
    }
    if (v)
    {
	if (ident == Id::offset)
	{
	    if (!global.params.useDeprecated)
		error(e->loc, ".offset deprecated, use .offsetof");
	    goto Loffset;
	}
	else if (ident == Id::offsetof)
	{
	  Loffset:
	    if (v->storage_class & STCfield)
	    {
		e = new IntegerExp(e->loc, v->offset, Type::tsize_t);
		return e;
	    }
	}
	else if (ident == Id::init)
	{
#if 0
	    if (v->init)
	    {
		if (v->init->isVoidInitializer())
		    error(e->loc, "%s.init is void", v->toChars());
		else
		{   Loc loc = e->loc;
		    e = v->init->toExpression();
		    if (e->op == TOKassign || e->op == TOKconstruct || e->op == TOKblit)
		    {
			e = ((AssignExp *)e)->e2;

			/* Take care of case where we used a 0
			 * to initialize the struct.
			 */
			if (e->type == Type::tint32 &&
			    e->isBool(0) &&
			    v->type->toBasetype()->ty == Tstruct)
			{
			    e = v->type->defaultInit(e->loc);
			}
		    }
		    e = e->optimize(WANTvalue | WANTinterpret);
//		    if (!e->isConst())
//			error(loc, ".init cannot be evaluated at compile time");
		}
		return e;
	    }
#endif
	    Expression *ex = defaultInit(e->loc);
	    return ex;
	}
    }
    if (ident == Id::typeinfo)
    {
	if (!global.params.useDeprecated)
	    error(e->loc, ".typeinfo deprecated, use typeid(type)");
	e = getTypeInfo(sc);
	return e;
    }
    if (ident == Id::stringof)
    {	char *s = e->toChars();
	e = new StringExp(e->loc, s, strlen(s), 'c');
	Scope sc;
	e = e->semantic(&sc);
	return e;
    }
    return getProperty(e->loc, ident);
}

unsigned Type::memalign(unsigned salign)
{
    return salign;
}

void Type::error(Loc loc, const char *format, ...)
{
    va_list ap;
    va_start(ap, format);
    ::verror(loc, format, ap);
    va_end( ap );
}

Identifier *Type::getTypeInfoIdent(int internal)
{
    // _init_10TypeInfo_%s
    OutBuffer buf;
    Identifier *id;
    char *name;
    int len;

    if (internal)
    {	buf.writeByte(mangleChar[ty]);
	if (ty == Tarray)
	    buf.writeByte(mangleChar[((TypeArray *)this)->next->ty]);
    }
    else
	toDecoBuffer(&buf);
    len = buf.offset;
    name = (char *)alloca(19 + sizeof(len) * 3 + len + 1);
    buf.writeByte(0);
    sprintf(name, "_D%dTypeInfo_%s6__initZ", 9 + len, buf.data);
// LDC
// it is not clear where the underscore that's stripped here is added back in
//    if (global.params.isWindows)
//	name++;			// C mangling will add it back in
    //printf("name = %s\n", name);
    id = Lexer::idPool(name);
    return id;
}

TypeBasic *Type::isTypeBasic()
{
    return NULL;
}


void Type::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    //printf("Type::resolve() %s, %d\n", toChars(), ty);
    Type *t = semantic(loc, sc);
    *pt = t;
    *pe = NULL;
    *ps = NULL;
}

/*******************************
 * If one of the subtypes of this type is a TypeIdentifier,
 * i.e. it's an unresolved type, return that type.
 */

Type *Type::reliesOnTident()
{
    return NULL;
}

/********************************
 * We've mistakenly parsed this as a type.
 * Redo it as an Expression.
 * NULL if cannot.
 */

Expression *Type::toExpression()
{
    return NULL;
}

/***************************************
 * Return !=0 if type has pointers that need to
 * be scanned by the GC during a collection cycle.
 */

int Type::hasPointers()
{
    return FALSE;
}

/*************************************
 * If this is a type of something, return that something.
 */

Type *Type::nextOf()
{
    return NULL;
}

/* ============================= TypeNext =========================== */

TypeNext::TypeNext(TY ty, Type *next)
	: Type(ty)
{
    this->next = next;
}

void TypeNext::toDecoBuffer(OutBuffer *buf, int flag)
{
    Type::toDecoBuffer(buf, flag);
    assert(next != this);
    //printf("this = %p, ty = %d, next = %p, ty = %d\n", this, this->ty, next, next->ty);
    next->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod);
}

void TypeNext::checkDeprecated(Loc loc, Scope *sc)
{
    Type::checkDeprecated(loc, sc);
    next->checkDeprecated(loc, sc);
}


Type *TypeNext::reliesOnTident()
{
    return next->reliesOnTident();
}

Type *TypeNext::nextOf()
{
    return next;
}

Type *TypeNext::makeConst()
{
    //printf("TypeNext::makeConst() %p, %s\n", this, toChars());
    if (cto)
	return cto;
    TypeNext *t = (TypeNext *)Type::makeConst();
    if (ty != Tfunction && ty != Tdelegate && next->deco &&
        !next->isInvariant())
	t->next = next->constOf();
    //printf("TypeNext::makeConst() returns %p, %s\n", t, t->toChars());
    return t;
}

Type *TypeNext::makeInvariant()
{
    //printf("TypeNext::makeInvariant() %s\n", toChars());
    if (ito)
    {	assert(ito->isInvariant());
	return ito;
    }
    TypeNext *t = (TypeNext *)Type::makeInvariant();
    if (ty != Tfunction && ty != Tdelegate && next->deco)
    {	t->next = next->invariantOf();
    }
    return t;
}

MATCH TypeNext::constConv(Type *to)
{   MATCH m = Type::constConv(to);

    if (m == MATCHconst &&
        next->constConv(((TypeNext *)to)->next) == MATCHnomatch)
	m = MATCHnomatch;
    return m;
}


/* ============================= TypeBasic =========================== */

TypeBasic::TypeBasic(TY ty)
	: Type(ty)
{   const char *d;
    unsigned flags;

#define TFLAGSintegral	1
#define TFLAGSfloating	2
#define TFLAGSunsigned	4
#define TFLAGSreal	8
#define TFLAGSimaginary	0x10
#define TFLAGScomplex	0x20

    flags = 0;
    switch (ty)
    {
	case Tvoid:	d = Token::toChars(TOKvoid);
			break;

	case Tint8:	d = Token::toChars(TOKint8);
			flags |= TFLAGSintegral;
			break;

	case Tuns8:	d = Token::toChars(TOKuns8);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tint16:	d = Token::toChars(TOKint16);
			flags |= TFLAGSintegral;
			break;

	case Tuns16:	d = Token::toChars(TOKuns16);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tint32:	d = Token::toChars(TOKint32);
			flags |= TFLAGSintegral;
			break;

	case Tuns32:	d = Token::toChars(TOKuns32);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tfloat32:	d = Token::toChars(TOKfloat32);
			flags |= TFLAGSfloating | TFLAGSreal;
			break;

	case Tint64:	d = Token::toChars(TOKint64);
			flags |= TFLAGSintegral;
			break;

	case Tuns64:	d = Token::toChars(TOKuns64);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tfloat64:	d = Token::toChars(TOKfloat64);
			flags |= TFLAGSfloating | TFLAGSreal;
			break;

	case Tfloat80:	d = Token::toChars(TOKfloat80);
			flags |= TFLAGSfloating | TFLAGSreal;
			break;

	case Timaginary32: d = Token::toChars(TOKimaginary32);
			flags |= TFLAGSfloating | TFLAGSimaginary;
			break;

	case Timaginary64: d = Token::toChars(TOKimaginary64);
			flags |= TFLAGSfloating | TFLAGSimaginary;
			break;

	case Timaginary80: d = Token::toChars(TOKimaginary80);
			flags |= TFLAGSfloating | TFLAGSimaginary;
			break;

	case Tcomplex32: d = Token::toChars(TOKcomplex32);
			flags |= TFLAGSfloating | TFLAGScomplex;
			break;

	case Tcomplex64: d = Token::toChars(TOKcomplex64);
			flags |= TFLAGSfloating | TFLAGScomplex;
			break;

	case Tcomplex80: d = Token::toChars(TOKcomplex80);
			flags |= TFLAGSfloating | TFLAGScomplex;
			break;

	case Tbool:	d = "bool";
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tascii:	d = Token::toChars(TOKchar);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Twchar:	d = Token::toChars(TOKwchar);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	case Tdchar:	d = Token::toChars(TOKdchar);
			flags |= TFLAGSintegral | TFLAGSunsigned;
			break;

	default:	assert(0);
    }
    this->dstring = d;
    this->flags = flags;
    merge();
}

Type *TypeBasic::syntaxCopy()
{
    // No semantic analysis done on basic types, no need to copy
    return this;
}


char *TypeBasic::toChars()
{
    return Type::toChars();
}

void TypeBasic::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypeBasic::toCBuffer2(mod = %d, this->mod = %d)\n", mod, this->mod);
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(dstring);
}

d_uns64 TypeBasic::size(Loc loc)
{   unsigned size;

    //printf("TypeBasic::size()\n");
    switch (ty)
    {
	case Tint8:
	case Tuns8:	size = 1;	break;
	case Tint16:
	case Tuns16:	size = 2;	break;
	case Tint32:
	case Tuns32:
	case Tfloat32:
	case Timaginary32:
			size = 4;	break;
	case Tint64:
	case Tuns64:
	case Tfloat64:
	case Timaginary64:
			size = 8;	break;
	case Tfloat80:
	case Timaginary80:
			size = REALSIZE;	break;
	case Tcomplex32:
			size = 8;		break;
	case Tcomplex64:
			size = 16;		break;
	case Tcomplex80:
			size = REALSIZE * 2;	break;

	case Tvoid:
	    //size = Type::size();	// error message
	    size = 1;
	    break;

	case Tbool:	size = 1;		break;
	case Tascii:	size = 1;		break;
	case Twchar:	size = 2;		break;
	case Tdchar:	size = 4;		break;

	default:
	    assert(0);
	    break;
    }
    //printf("TypeBasic::size() = %d\n", size);
    return size;
}

unsigned TypeBasic::alignsize()
{
    if (ty == Tvoid)
        return 1;
    return getABITypeAlign(DtoType(this));
}


Expression *TypeBasic::getProperty(Loc loc, Identifier *ident)
{
    Expression *e;
    d_int64 ivalue;
#ifdef IN_GCC
    real_t    fvalue;
#else
    d_float80 fvalue;
#endif

    //printf("TypeBasic::getProperty('%s')\n", ident->toChars());
    if (ident == Id::max)
    {
	switch (ty)
	{
	    case Tint8:		ivalue = 0x7F;		goto Livalue;
	    case Tuns8:		ivalue = 0xFF;		goto Livalue;
	    case Tint16:	ivalue = 0x7FFFUL;	goto Livalue;
	    case Tuns16:	ivalue = 0xFFFFUL;	goto Livalue;
	    case Tint32:	ivalue = 0x7FFFFFFFUL;	goto Livalue;
	    case Tuns32:	ivalue = 0xFFFFFFFFUL;	goto Livalue;
	    case Tint64:	ivalue = 0x7FFFFFFFFFFFFFFFLL;	goto Livalue;
	    case Tuns64:	ivalue = 0xFFFFFFFFFFFFFFFFULL;	goto Livalue;
	    case Tbool:		ivalue = 1;		goto Livalue;
	    case Tchar:		ivalue = 0xFF;		goto Livalue;
	    case Twchar:	ivalue = 0xFFFFUL;	goto Livalue;
	    case Tdchar:	ivalue = 0x10FFFFUL;	goto Livalue;

	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	fvalue = FLT_MAX;	goto Lfvalue;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	fvalue = DBL_MAX;	goto Lfvalue;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	fvalue = LDBL_MAX;	goto Lfvalue;
	}
    }
    else if (ident == Id::min)
    {
	switch (ty)
	{
	    case Tint8:		ivalue = -128;		goto Livalue;
	    case Tuns8:		ivalue = 0;		goto Livalue;
	    case Tint16:	ivalue = -32768;	goto Livalue;
	    case Tuns16:	ivalue = 0;		goto Livalue;
	    case Tint32:	ivalue = -2147483647L - 1;	goto Livalue;
	    case Tuns32:	ivalue = 0;			goto Livalue;
	    case Tint64:	ivalue = (-9223372036854775807LL-1LL);	goto Livalue;
	    case Tuns64:	ivalue = 0;		goto Livalue;
	    case Tbool:		ivalue = 0;		goto Livalue;
	    case Tchar:		ivalue = 0;		goto Livalue;
	    case Twchar:	ivalue = 0;		goto Livalue;
	    case Tdchar:	ivalue = 0;		goto Livalue;

	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	fvalue = FLT_MIN;	goto Lfvalue;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	fvalue = DBL_MIN;	goto Lfvalue;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	fvalue = LDBL_MIN;	goto Lfvalue;
	}
    }
    else if (ident == Id::nan)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Tcomplex64:
	    case Tcomplex80:
	    case Timaginary32:
	    case Timaginary64:
	    case Timaginary80:
	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
	    {
#if IN_GCC
		// mode doesn't matter, will be converted in RealExp anyway
		fvalue = real_t::getnan(real_t::LongDouble);
#elif __GNUC__
		// gcc nan's have the sign bit set by default, so turn it off
		// Need the volatile to prevent gcc from doing incorrect
		// constant folding.
		volatile d_float80 foo;
		foo = NAN;
		if (std::signbit(foo))	// signbit sometimes, not always, set
		    foo = -foo;		// turn off sign bit
		fvalue = foo;
#elif _MSC_VER
		unsigned long nan[2]= { 0xFFFFFFFF, 0x7FFFFFFF };
		fvalue = *(double*)nan;
#else
		fvalue = NAN;
#endif
		goto Lfvalue;
	    }
	}
    }
    else if (ident == Id::infinity)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Tcomplex64:
	    case Tcomplex80:
	    case Timaginary32:
	    case Timaginary64:
	    case Timaginary80:
	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
#if IN_GCC
		fvalue = real_t::getinfinity();
#elif __GNUC__
		fvalue = 1 / zero;
#elif _MSC_VER
		fvalue = std::numeric_limits<long double>::infinity();
#else
		fvalue = INFINITY;
#endif
		goto Lfvalue;
	}
    }
    else if (ident == Id::dig)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_DIG;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_DIG;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_DIG;	goto Lint;
	}
    }
    else if (ident == Id::epsilon)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	fvalue = FLT_EPSILON;	goto Lfvalue;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	fvalue = DBL_EPSILON;	goto Lfvalue;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	fvalue = LDBL_EPSILON;	goto Lfvalue;
	}
    }
    else if (ident == Id::mant_dig)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MANT_DIG;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MANT_DIG;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MANT_DIG; goto Lint;
	}
    }
    else if (ident == Id::max_10_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MAX_10_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MAX_10_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MAX_10_EXP;	goto Lint;
	}
    }
    else if (ident == Id::max_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MAX_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MAX_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MAX_EXP;	goto Lint;
	}
    }
    else if (ident == Id::min_10_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MIN_10_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MIN_10_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MIN_10_EXP;	goto Lint;
	}
    }
    else if (ident == Id::min_exp)
    {
	switch (ty)
	{
	    case Tcomplex32:
	    case Timaginary32:
	    case Tfloat32:	ivalue = FLT_MIN_EXP;	goto Lint;
	    case Tcomplex64:
	    case Timaginary64:
	    case Tfloat64:	ivalue = DBL_MIN_EXP;	goto Lint;
	    case Tcomplex80:
	    case Timaginary80:
	    case Tfloat80:	ivalue = LDBL_MIN_EXP;	goto Lint;
	}
    }

Ldefault:
    return Type::getProperty(loc, ident);

Livalue:
    e = new IntegerExp(loc, ivalue, this);
    return e;

Lfvalue:
    if (isreal() || isimaginary())
	e = new RealExp(loc, fvalue, this);
    else
    {
	complex_t cvalue;

#if __DMC__
	//((real_t *)&cvalue)[0] = fvalue;
	//((real_t *)&cvalue)[1] = fvalue;
	cvalue = fvalue + fvalue * I;
#else
	cvalue.re = fvalue;
	cvalue.im = fvalue;
#endif
	//for (int i = 0; i < 20; i++)
	//    printf("%02x ", ((unsigned char *)&cvalue)[i]);
	//printf("\n");
	e = new ComplexExp(loc, cvalue, this);
    }
    return e;

Lint:
    e = new IntegerExp(loc, ivalue, Type::tint32);
    return e;
}

Expression *TypeBasic::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeBasic::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    Type *t;

    if (ident == Id::re)
    {
	switch (ty)
	{
	    case Tcomplex32:	t = tfloat32;		goto L1;
	    case Tcomplex64:	t = tfloat64;		goto L1;
	    case Tcomplex80:	t = tfloat80;		goto L1;
	    L1:
		e = e->castTo(sc, t);
		break;

	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
		break;

	    case Timaginary32:	t = tfloat32;		goto L2;
	    case Timaginary64:	t = tfloat64;		goto L2;
	    case Timaginary80:	t = tfloat80;		goto L2;
	    L2:
		e = new RealExp(0, 0.0, t);
		break;

	    default:
		return Type::getProperty(e->loc, ident);
	}
    }
    else if (ident == Id::im)
    {	Type *t2;

	switch (ty)
	{
	    case Tcomplex32:	t = timaginary32;	t2 = tfloat32;	goto L3;
	    case Tcomplex64:	t = timaginary64;	t2 = tfloat64;	goto L3;
	    case Tcomplex80:	t = timaginary80;	t2 = tfloat80;	goto L3;
	    L3:
		e = e->castTo(sc, t);
		e->type = t2;
		break;

	    case Timaginary32:	t = tfloat32;	goto L4;
	    case Timaginary64:	t = tfloat64;	goto L4;
	    case Timaginary80:	t = tfloat80;	goto L4;
	    L4:
		e = e->copy();
		e->type = t;
		break;

	    case Tfloat32:
	    case Tfloat64:
	    case Tfloat80:
		e = new RealExp(0, 0.0, this);
		break;

	    default:
		return Type::getProperty(e->loc, ident);
	}
    }
    else
    {
	return Type::dotExp(sc, e, ident);
    }
    return e;
}

Expression *TypeBasic::defaultInit(Loc loc)
{   integer_t value = 0;

#if LOGDEFAULTINIT
    printf("TypeBasic::defaultInit() '%s'\n", toChars());
#endif
    switch (ty)
    {
	case Tvoid:
	    return new IntegerExp(loc, value, Type::tbool);

	case Tchar:
	    value = 0xFF;
	    break;

	case Twchar:
	case Tdchar:
	    value = 0xFFFF;
	    break;

	case Timaginary32:
	case Timaginary64:
	case Timaginary80:
	case Tfloat32:
	case Tfloat64:
	case Tfloat80:
	case Tcomplex32:
	case Tcomplex64:
	case Tcomplex80:
	    return getProperty(loc, Id::nan);
    }
    return new IntegerExp(loc, value, this);
}

int TypeBasic::isZeroInit()
{
    switch (ty)
    {
	case Tchar:
	case Twchar:
	case Tdchar:
	case Timaginary32:
	case Timaginary64:
	case Timaginary80:
	case Tfloat32:
	case Tfloat64:
	case Tfloat80:
	case Tcomplex32:
	case Tcomplex64:
	case Tcomplex80:
	    return 0;		// no
    }
    return 1;			// yes
}

int TypeBasic::isintegral()
{
    //printf("TypeBasic::isintegral('%s') x%x\n", toChars(), flags);
    return flags & TFLAGSintegral;
}

int TypeBasic::isfloating()
{
    return flags & TFLAGSfloating;
}

int TypeBasic::isreal()
{
    return flags & TFLAGSreal;
}

int TypeBasic::isimaginary()
{
    return flags & TFLAGSimaginary;
}

int TypeBasic::iscomplex()
{
    return flags & TFLAGScomplex;
}

int TypeBasic::isunsigned()
{
    return flags & TFLAGSunsigned;
}

int TypeBasic::isscalar()
{
    return flags & (TFLAGSintegral | TFLAGSfloating);
}

MATCH TypeBasic::implicitConvTo(Type *to)
{
    //printf("TypeBasic::implicitConvTo(%s) from %s\n", to->toChars(), toChars());
    if (this == to)
	return MATCHexact;

    if (ty == to->ty)
    {
	return (mod == to->mod) ? MATCHexact : MATCHconst;
    }

    if (ty == Tvoid || to->ty == Tvoid)
	return MATCHnomatch;
    if (1 || global.params.Dversion == 1)
    {
	if (to->ty == Tbool)
	    return MATCHnomatch;
    }
    else
    {
	if (ty == Tbool || to->ty == Tbool)
	    return MATCHnomatch;
    }
    if (!to->isTypeBasic())
	return MATCHnomatch;

    TypeBasic *tob = (TypeBasic *)to;
    if (flags & TFLAGSintegral)
    {
	// Disallow implicit conversion of integers to imaginary or complex
	if (tob->flags & (TFLAGSimaginary | TFLAGScomplex))
	    return MATCHnomatch;

	// If converting to integral
	if (0 && global.params.Dversion > 1 && tob->flags & TFLAGSintegral)
	{   d_uns64 sz = size(0);
	    d_uns64 tosz = tob->size(0);

	    /* Can't convert to smaller size or, if same size, change sign
	     */
	    if (sz > tosz)
		return MATCHnomatch;

	    /*if (sz == tosz && (flags ^ tob->flags) & TFLAGSunsigned)
		return MATCHnomatch;*/
	}
    }
    else if (flags & TFLAGSfloating)
    {
	// Disallow implicit conversion of floating point to integer
	if (tob->flags & TFLAGSintegral)
	    return MATCHnomatch;

	assert(tob->flags & TFLAGSfloating);

	// Disallow implicit conversion from complex to non-complex
	if (flags & TFLAGScomplex && !(tob->flags & TFLAGScomplex))
	    return MATCHnomatch;

	// Disallow implicit conversion of real or imaginary to complex
	if (flags & (TFLAGSreal | TFLAGSimaginary) &&
	    tob->flags & TFLAGScomplex)
	    return MATCHnomatch;

	// Disallow implicit conversion to-from real and imaginary
	if ((flags & (TFLAGSreal | TFLAGSimaginary)) !=
	    (tob->flags & (TFLAGSreal | TFLAGSimaginary)))
	    return MATCHnomatch;
    }
    return MATCHconvert;
}

TypeBasic *TypeBasic::isTypeBasic()
{
    return (TypeBasic *)this;
}

/***************************** TypeArray *****************************/

TypeArray::TypeArray(TY ty, Type *next)
    : TypeNext(ty, next)
{
}

Expression *TypeArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
    Type *n = this->next->toBasetype();		// uncover any typedef's

#if LOGDOTEXP
    printf("TypeArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::reverse && (n->ty == Tchar || n->ty == Twchar))
    {
	Expression *ec;
	Expressions *arguments;

	//LDC: Build arguments.
	static FuncDeclaration *adReverseChar_fd = NULL;
	if(!adReverseChar_fd) {
	    Arguments* args = new Arguments;
	    Type* arrty = Type::tchar->arrayOf();
	    args->push(new Argument(STCin, arrty, NULL, NULL));
	    adReverseChar_fd = FuncDeclaration::genCfunc(args, arrty, "_adReverseChar");
	}
	static FuncDeclaration *adReverseWchar_fd = NULL;
	if(!adReverseWchar_fd) {
	    Arguments* args = new Arguments;
	    Type* arrty = Type::twchar->arrayOf();
	    args->push(new Argument(STCin, arrty, NULL, NULL));
	    adReverseWchar_fd = FuncDeclaration::genCfunc(args, arrty, "_adReverseWchar");
	}

	if(n->ty == Twchar)
	    ec = new VarExp(0, adReverseWchar_fd);
	else
	    ec = new VarExp(0, adReverseChar_fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	arguments->push(e);
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::sort && (n->ty == Tchar || n->ty == Twchar))
    {
	Expression *ec;
	Expressions *arguments;

	//LDC: Build arguments.
	static FuncDeclaration *adSortChar_fd = NULL;
	if(!adSortChar_fd) {
	    Arguments* args = new Arguments;
	    Type* arrty = Type::tchar->arrayOf();
	    args->push(new Argument(STCin, arrty, NULL, NULL));
	    adSortChar_fd = FuncDeclaration::genCfunc(args, arrty, "_adSortChar");
	}
	static FuncDeclaration *adSortWchar_fd = NULL;
	if(!adSortWchar_fd) {
	    Arguments* args = new Arguments;
	    Type* arrty = Type::twchar->arrayOf();
	    args->push(new Argument(STCin, arrty, NULL, NULL));
	    adSortWchar_fd = FuncDeclaration::genCfunc(args, arrty, "_adSortWchar");
	}

	if(n->ty == Twchar)
	    ec = new VarExp(0, adSortWchar_fd);
	else
	    ec = new VarExp(0, adSortChar_fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	arguments->push(e);
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::reverse || ident == Id::dup || ident == Id::idup)
    {
	Expression *ec;
	Expressions *arguments;
	int size = next->size(e->loc);
	int dup;

	assert(size);
	dup = (ident == Id::dup || ident == Id::idup);
	//LDC: Build arguments.
	static FuncDeclaration *adDup_fd = NULL;
	if(!adDup_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::typeinfo->type, NULL, NULL));
	    args->push(new Argument(STCin, Type::tvoid->arrayOf(), NULL, NULL));
	    adDup_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::adDup);
	}
	static FuncDeclaration *adReverse_fd = NULL;
	if(!adReverse_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->arrayOf(), NULL, NULL));
	    args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
	    adReverse_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::adReverse);
	}

	if(dup)
	    ec = new VarExp(0, adDup_fd);
	else
	    ec = new VarExp(0, adReverse_fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();
	if (dup)
	    arguments->push(getTypeInfo(sc));

    // LDC repaint array type to void[]
    if (n->ty != Tvoid) {
        e = new CastExp(e->loc, e, e->type);
        e->type = Type::tvoid->arrayOf();
    }
    arguments->push(e);

	if (!dup)
	    arguments->push(new IntegerExp(0, size, Type::tsize_t));
	e = new CallExp(e->loc, ec, arguments);
	if (ident == Id::idup)
	{   Type *einv = next->invariantOf();
	    if (next->implicitConvTo(einv) < MATCHconst)
		error(e->loc, "cannot implicitly convert element type %s to invariant", next->toChars());
	    e->type = einv->arrayOf();
	}
	else
	    e->type = next->mutableOf()->arrayOf();
    }
    else if (ident == Id::sort)
    {
	Expression *ec;
	Expressions *arguments;
	bool isBit = (n->ty == Tbit);

	//LDC: Build arguments.
	static FuncDeclaration *adSort_fd = NULL;
	if(!adSort_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->arrayOf(), NULL, NULL));
	    args->push(new Argument(STCin, Type::typeinfo->type, NULL, NULL));
	    adSort_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), "_adSort");
	}
	static FuncDeclaration *adSortBit_fd = NULL;
	if(!adSortBit_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->arrayOf(), NULL, NULL));
	    args->push(new Argument(STCin, Type::typeinfo->type, NULL, NULL));
	    adSortBit_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), "_adSortBit");
	}

	if(isBit)
	    ec = new VarExp(0, adSortBit_fd);
	else
	    ec = new VarExp(0, adSort_fd);
	e = e->castTo(sc, n->arrayOf());	// convert to dynamic array
	arguments = new Expressions();

    // LDC repaint array type to void[]
    if (n->ty != Tvoid) {
        e = new CastExp(e->loc, e, e->type);
        e->type = Type::tvoid->arrayOf();
    }
    arguments->push(e);

    arguments->push(n->getTypeInfo(sc));   // LDC, we don't support the getInternalTypeInfo
                                           // optimization arbitrarily, not yet at least...
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else
    {
	e = Type::dotExp(sc, e, ident);
    }
    return e;
}



/***************************** TypeSArray *****************************/

TypeSArray::TypeSArray(Type *t, Expression *dim)
    : TypeArray(Tsarray, t)
{
    //printf("TypeSArray(%s)\n", dim->toChars());
    this->dim = dim;
}

Type *TypeSArray::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    Expression *e = dim->syntaxCopy();
    t = new TypeSArray(t, e);
    t->mod = mod;
    return t;
}

d_uns64 TypeSArray::size(Loc loc)
{   integer_t sz;

    if (!dim)
	return Type::size(loc);
    sz = dim->toInteger();

    {	integer_t n, n2;

	n = next->size();
	n2 = n * sz;
	if (n && (n2 / n) != sz)
	    goto Loverflow;
	sz = n2;
    }
    return sz;

Loverflow:
    error(loc, "index %lld overflow for static array", sz);
    return 1;
}

unsigned TypeSArray::alignsize()
{
    return next->alignsize();
}

/**************************
 * This evaluates exp while setting length to be the number
 * of elements in the tuple t.
 */
Expression *semanticLength(Scope *sc, Type *t, Expression *exp)
{
    if (t->ty == Ttuple)
    {	ScopeDsymbol *sym = new ArrayScopeSymbol(sc, (TypeTuple *)t);
	sym->parent = sc->scopesym;
	sc = sc->push(sym);

	exp = exp->semantic(sc);

	sc->pop();
    }
    else
	exp = exp->semantic(sc);
    return exp;
}

Expression *semanticLength(Scope *sc, TupleDeclaration *s, Expression *exp)
{
    ScopeDsymbol *sym = new ArrayScopeSymbol(sc, s);
    sym->parent = sc->scopesym;
    sc = sc->push(sym);

    exp = exp->semantic(sc);

    sc->pop();
    return exp;
}

void TypeSArray::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    //printf("TypeSArray::resolve() %s\n", toChars());
    next->resolve(loc, sc, pe, pt, ps);
    //printf("s = %p, e = %p, t = %p\n", *ps, *pe, *pt);
    if (*pe)
    {	// It's really an index expression
	Expression *e = new IndexExp(loc, *pe, dim);
	*pe = e;
    }
    else if (*ps)
    {	Dsymbol *s = *ps;
	TupleDeclaration *td = s->isTupleDeclaration();
	if (td)
	{
	    ScopeDsymbol *sym = new ArrayScopeSymbol(sc, td);
	    sym->parent = sc->scopesym;
	    sc = sc->push(sym);

	    dim = dim->semantic(sc);
	    dim = dim->optimize(WANTvalue | WANTinterpret);
	    uinteger_t d = dim->toUInteger();

	    sc = sc->pop();

	    if (d >= td->objects->dim)
	    {	error(loc, "tuple index %llu exceeds %u", d, td->objects->dim);
		goto Ldefault;
	    }
	    Object *o = (Object *)td->objects->data[(size_t)d];
	    if (o->dyncast() == DYNCAST_DSYMBOL)
	    {
		*ps = (Dsymbol *)o;
		return;
	    }
	    if (o->dyncast() == DYNCAST_EXPRESSION)
	    {
		*ps = NULL;
		*pe = (Expression *)o;
		return;
	    }

	    /* Create a new TupleDeclaration which
	     * is a slice [d..d+1] out of the old one.
	     * Do it this way because TemplateInstance::semanticTiargs()
	     * can handle unresolved Objects this way.
	     */
	    Objects *objects = new Objects;
	    objects->setDim(1);
	    objects->data[0] = o;

	    TupleDeclaration *tds = new TupleDeclaration(loc, td->ident, objects);
	    *ps = tds;
	}
	else
	    goto Ldefault;
    }
    else
    {
     Ldefault:
	Type::resolve(loc, sc, pe, pt, ps);
    }
}

Type *TypeSArray::semantic(Loc loc, Scope *sc)
{
    //printf("TypeSArray::semantic() %s\n", toChars());

    Type *t;
    Expression *e;
    Dsymbol *s;
    next->resolve(loc, sc, &e, &t, &s);
    if (dim && s && s->isTupleDeclaration())
    {	TupleDeclaration *sd = s->isTupleDeclaration();

	dim = semanticLength(sc, sd, dim);
	dim = dim->optimize(WANTvalue | WANTinterpret);
	uinteger_t d = dim->toUInteger();

	if (d >= sd->objects->dim)
	{   error(loc, "tuple index %llu exceeds %u", d, sd->objects->dim);
	    return Type::terror;
	}
	Object *o = (Object *)sd->objects->data[(size_t)d];
	if (o->dyncast() != DYNCAST_TYPE)
	{   error(loc, "%s is not a type", toChars());
	    return Type::terror;
	}
	t = (Type *)o;
	return t;
    }

    next = next->semantic(loc,sc);
    if (mod == MODconst && !next->isInvariant())
	next = next->constOf();
    else if (mod == MODinvariant)
	next = next->invariantOf();

    Type *tbn = next->toBasetype();

    if (dim)
    {	integer_t n, n2;

	dim = semanticLength(sc, tbn, dim);

	dim = dim->optimize(WANTvalue | WANTinterpret);
	if (sc && sc->parameterSpecialization && dim->op == TOKvar &&
	    ((VarExp *)dim)->var->storage_class & STCtemplateparameter)
	{
	    /* It could be a template parameter N which has no value yet:
	     *   template Foo(T : T[N], size_t N);
	     */
	    return this;
	}
	integer_t d1 = dim->toInteger();
	dim = dim->castTo(sc, tsize_t);
	dim = dim->optimize(WANTvalue);
	integer_t d2 = dim->toInteger();

	if (d1 != d2)
	    goto Loverflow;

	if (tbn->isintegral() ||
		 tbn->isfloating() ||
		 tbn->ty == Tpointer ||
		 tbn->ty == Tarray ||
		 tbn->ty == Tsarray ||
		 tbn->ty == Taarray ||
		 tbn->ty == Tclass)
	{
	    /* Only do this for types that don't need to have semantic()
	     * run on them for the size, since they may be forward referenced.
	     */
	    n = tbn->size(loc);
	    n2 = n * d2;
	    if ((int)n2 < 0)
		goto Loverflow;
	    if (n2 >= 0x1000000)	// put a 'reasonable' limit on it
		goto Loverflow;
	    if (n && n2 / n != d2)
	    {
	      Loverflow:
		error(loc, "index %lld overflow for static array", d1);
		dim = new IntegerExp(0, 1, tsize_t);
	    }
	}
    }
    switch (tbn->ty)
    {
	case Ttuple:
	{   // Index the tuple to get the type
	    assert(dim);
	    TypeTuple *tt = (TypeTuple *)tbn;
	    uinteger_t d = dim->toUInteger();

	    if (d >= tt->arguments->dim)
	    {	error(loc, "tuple index %llu exceeds %u", d, tt->arguments->dim);
		return Type::terror;
	    }
	    Argument *arg = (Argument *)tt->arguments->data[(size_t)d];
	    return arg->type;
	}
	case Tfunction:
	case Tnone:
	    error(loc, "can't have array of %s", tbn->toChars());
	    tbn = next = tint32;
	    break;
    }
    if (tbn->isauto())
	error(loc, "cannot have array of auto %s", tbn->toChars());
    return merge();
}

void TypeSArray::toDecoBuffer(OutBuffer *buf, int flag)
{
    Type::toDecoBuffer(buf, flag);
    if (dim)
	buf->printf("%llu", dim->toInteger());
    if (next)
	/* Note that static arrays are value types, so
	 * for a parameter, propagate the 0x100 to the next
	 * level, since for T[4][3], any const should apply to the T,
	 * not the [4].
	 */
	next->toDecoBuffer(buf,  (flag & 0x100) ? flag : mod);
}

void TypeSArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->printf("[%s]", dim->toChars());
}

Expression *TypeSArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeSArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	e = dim;
    }
    else if (ident == Id::ptr)
    {
	e = e->castTo(sc, next->pointerTo());
    }
    else
    {
	e = TypeArray::dotExp(sc, e, ident);
    }
    return e;
}

int TypeSArray::isString()
{
    TY nty = next->toBasetype()->ty;
    return nty == Tchar || nty == Twchar || nty == Tdchar;
}

unsigned TypeSArray::memalign(unsigned salign)
{
    return next->memalign(salign);
}

MATCH TypeSArray::constConv(Type *to)
{
    if (to->ty == Tsarray)
    {
	TypeSArray *tsa = (TypeSArray *)to;
	if (!dim->equals(tsa->dim))
	    return MATCHnomatch;
    }
    return TypeNext::constConv(to);
}

MATCH TypeSArray::implicitConvTo(Type *to)
{
    //printf("TypeSArray::implicitConvTo(to = %s) this = %s\n", to->toChars(), toChars());

    // Allow implicit conversion of static array to pointer or dynamic array
    if (IMPLICIT_ARRAY_TO_PTR && to->ty == Tpointer)
    {
	TypePointer *tp = (TypePointer *)to;

	if (next->mod != tp->next->mod && tp->next->mod != MODconst)
	    return MATCHnomatch;

	if (tp->next->ty == Tvoid || next->constConv(tp->next) != MATCHnomatch)
	{
	    return MATCHconvert;
	}
	return MATCHnomatch;
    }
    if (to->ty == Tarray)
    {	int offset = 0;
	TypeDArray *ta = (TypeDArray *)to;

	if (next->mod != ta->next->mod && ta->next->mod != MODconst)
	    return MATCHnomatch;

	if (next->equals(ta->next) ||
	    next->implicitConvTo(ta->next) >= MATCHconst ||
	    (ta->next->isBaseOf(next, &offset) && offset == 0) ||
	    ta->next->ty == Tvoid)
	    return MATCHconvert;
	return MATCHnomatch;
    }
    if (to->ty == Tsarray)
    {
	if (this == to)
	    return MATCHexact;

	TypeSArray *tsa = (TypeSArray *)to;

	if (dim->equals(tsa->dim))
	{
	    /* Since static arrays are value types, allow
	     * conversions from const elements to non-const
	     * ones, just like we allow conversion from const int
	     * to int.
	     */
	    MATCH m = next->implicitConvTo(tsa->next);
	    if (m >= MATCHconst)
	    {
		if (mod != to->mod)
		    m = MATCHconst;
		return m;
	    }
	}
    }
    return MATCHnomatch;
}

Expression *TypeSArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeSArray::defaultInit() '%s'\n", toChars());
#endif
    return next->defaultInit(loc);
}

int TypeSArray::isZeroInit()
{
    return next->isZeroInit();
}


Expression *TypeSArray::toExpression()
{
    Expression *e = next->toExpression();
    if (e)
    {	Expressions *arguments = new Expressions();
	arguments->push(dim);
	e = new ArrayExp(dim->loc, e, arguments);
    }
    return e;
}

int TypeSArray::hasPointers()
{
    return next->hasPointers();
}

/***************************** TypeDArray *****************************/

TypeDArray::TypeDArray(Type *t)
    : TypeArray(Tarray, t)
{
    //printf("TypeDArray(t = %p)\n", t);
}

Type *TypeDArray::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
    {	t = new TypeDArray(t);
	t->mod = mod;
    }
    return t;
}

d_uns64 TypeDArray::size(Loc loc)
{
    //printf("TypeDArray::size()\n");
    return PTRSIZE * 2;
}

unsigned TypeDArray::alignsize()
{
    // A DArray consists of two ptr-sized values, so align it on pointer size
    // boundary
    return PTRSIZE;
}

Type *TypeDArray::semantic(Loc loc, Scope *sc)
{   Type *tn = next;

    tn = next->semantic(loc,sc);
    Type *tbn = tn->toBasetype();
    switch (tbn->ty)
    {
	case Tfunction:
	case Tnone:
	case Ttuple:
	    error(loc, "can't have array of %s", tbn->toChars());
	    tn = next = tint32;
	    break;
    }
    if (tn->isauto())
	error(loc, "cannot have array of auto %s", tn->toChars());

    if (mod == MODconst && !tn->isInvariant())
	tn = tn->constOf();
    else if (mod == MODinvariant)
	tn = tn->invariantOf();

    next = tn;
    return merge();
}

void TypeDArray::toDecoBuffer(OutBuffer *buf, int flag)
{
    Type::toDecoBuffer(buf, flag);
    if (next)
	next->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod);
}

void TypeDArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->writestring("[]");
}

Expression *TypeDArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeDArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	if (e->op == TOKstring)
	{   StringExp *se = (StringExp *)e;

	    return new IntegerExp(se->loc, se->len, Type::tindex);
	}
	e = new ArrayLengthExp(e->loc, e);
	e->type = Type::tsize_t;
	return e;
    }
    else if (ident == Id::ptr)
    {
	e = e->castTo(sc, next->pointerTo());
	return e;
    }
    else
    {
	e = TypeArray::dotExp(sc, e, ident);
    }
    return e;
}

int TypeDArray::isString()
{
    TY nty = next->toBasetype()->ty;
    return nty == Tchar || nty == Twchar || nty == Tdchar;
}

MATCH TypeDArray::implicitConvTo(Type *to)
{
    //printf("TypeDArray::implicitConvTo(to = %s) this = %s\n", to->toChars(), toChars());
    if (equals(to))
	return MATCHexact;

    // Allow implicit conversion of array to pointer
    if (IMPLICIT_ARRAY_TO_PTR && to->ty == Tpointer)
    {
	TypePointer *tp = (TypePointer *)to;

	/* Allow conversion to void*
	 */
	if (tp->next->ty == Tvoid &&
	    (next->mod == tp->next->mod || tp->next->mod == MODconst))
	{
	    return MATCHconvert;
	}

	return next->constConv(to);
    }

    if (to->ty == Tarray)
    {	int offset = 0;
	TypeDArray *ta = (TypeDArray *)to;

	if (!(next->mod == ta->next->mod || ta->next->mod == MODconst))
	    return MATCHnomatch;	// not const-compatible

	/* Allow conversion to void[]
	 */
	if (next->ty != Tvoid && ta->next->ty == Tvoid)
	{
	    return MATCHconvert;
	}

	MATCH m = next->constConv(ta->next);
	if (m != MATCHnomatch)
	{
	    if (m == MATCHexact && mod != to->mod)
		m = MATCHconst;
	    return m;
	}

	/* Allow conversions of T[][] to const(T)[][]
	 */
	if (mod == ta->mod && next->ty == Tarray && ta->next->ty == Tarray)
	{
	    m = next->implicitConvTo(ta->next);
	    if (m == MATCHconst)
		return m;
	}

	/* Conversion of array of derived to array of base
	 */
	if (ta->next->isBaseOf(next, &offset) && offset == 0)
	    return MATCHconvert;
    }
    return Type::implicitConvTo(to);
}

Expression *TypeDArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeDArray::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeDArray::isZeroInit()
{
    return 1;
}

int TypeDArray::checkBoolean()
{
    return TRUE;
}

int TypeDArray::hasPointers()
{
    return TRUE;
}

/***************************** TypeAArray *****************************/

TypeAArray::TypeAArray(Type *t, Type *index)
    : TypeArray(Taarray, t)
{
    this->index = index;
}

Type *TypeAArray::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    Type *ti = index->syntaxCopy();
    if (t == next && ti == index)
	t = this;
    else
    {	t = new TypeAArray(t, ti);
	t->mod = mod;
    }
    return t;
}

d_uns64 TypeAArray::size(Loc loc)
{
    return PTRSIZE /* * 2*/;
}


Type *TypeAArray::semantic(Loc loc, Scope *sc)
{
    //printf("TypeAArray::semantic() %s index->ty = %d\n", toChars(), index->ty);

    // Deal with the case where we thought the index was a type, but
    // in reality it was an expression.
    if (index->ty == Tident || index->ty == Tinstance || index->ty == Tsarray)
    {
	Expression *e;
	Type *t;
	Dsymbol *s;

	index->resolve(loc, sc, &e, &t, &s);
	if (e)
	{   // It was an expression -
	    // Rewrite as a static array
	    TypeSArray *tsa;

	    tsa = new TypeSArray(next, e);
	    return tsa->semantic(loc,sc);
	}
	else if (t)
	    index = t;
	else
	    index->error(loc, "index is not a type or an expression");
    }
    else
	index = index->semantic(loc,sc);

    if (index->nextOf() && !index->nextOf()->isInvariant())
    {
	index = index->constOf()->mutableOf();
    }

    switch (index->toBasetype()->ty)
    {
	case Tbool:
	case Tfunction:
	case Tvoid:
	case Tnone:
	    error(loc, "can't have associative array key of %s", index->toBasetype()->toChars());
	    break;
    }
    next = next->semantic(loc,sc);
    if (mod == MODconst && !next->isInvariant())
	next = next->constOf();
    else if (mod == MODinvariant)
	next = next->invariantOf();

    switch (next->toBasetype()->ty)
    {
	case Tfunction:
	case Tnone:
	    error(loc, "can't have associative array of %s", next->toChars());
	    break;
    }
    if (next->isauto())
	error(loc, "cannot have array of auto %s", next->toChars());

    return merge();
}

void TypeAArray::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    //printf("TypeAArray::resolve() %s\n", toChars());

    // Deal with the case where we thought the index was a type, but
    // in reality it was an expression.
    if (index->ty == Tident || index->ty == Tinstance || index->ty == Tsarray)
    {
	Expression *e;
	Type *t;
	Dsymbol *s;

	index->resolve(loc, sc, &e, &t, &s);
	if (e)
	{   // It was an expression -
	    // Rewrite as a static array

	    TypeSArray *tsa = new TypeSArray(next, e);
	    return tsa->resolve(loc, sc, pe, pt, ps);
	}
	else if (t)
	    index = t;
	else
	    index->error(loc, "index is not a type or an expression");
    }
    Type::resolve(loc, sc, pe, pt, ps);
}


Expression *TypeAArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeAArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	Expression *ec;
	Expressions *arguments;

	//LDC: Build arguments.
	static FuncDeclaration *aaLen_fd = NULL;
	if(!aaLen_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
	    aaLen_fd = FuncDeclaration::genCfunc(args, Type::tsize_t, Id::aaLen);
	}

	ec = new VarExp(0, aaLen_fd);
	arguments = new Expressions();
	arguments->push(e);
	e = new CallExp(e->loc, ec, arguments);
	e->type = ((TypeFunction *)aaLen_fd->type)->next;
    }
    else if (ident == Id::keys)
    {
	Expression *ec;
	Expressions *arguments;
	int size = index->size(e->loc);

	assert(size);
	//LDC: Build arguments.
	static FuncDeclaration *aaKeys_fd = NULL;
	if(!aaKeys_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
	    args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
	    aaKeys_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::aaKeys);
	}

	ec = new VarExp(0, aaKeys_fd);
	arguments = new Expressions();
	arguments->push(e);
	arguments->push(new IntegerExp(0, size, Type::tsize_t));
	e = new CallExp(e->loc, ec, arguments);
	e->type = index->arrayOf();
    }
    else if (ident == Id::values)
    {
	Expression *ec;
	Expressions *arguments;

	//LDC: Build arguments.
	static FuncDeclaration *aaValues_fd = NULL;
	if(!aaValues_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
	    args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
	    args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
	    aaValues_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::aaValues);
	}

	ec = new VarExp(0, aaValues_fd);
	arguments = new Expressions();
	arguments->push(e);
	size_t keysize = index->size(e->loc);
	keysize = (keysize + PTRSIZE - 1) & ~(PTRSIZE - 1);
	arguments->push(new IntegerExp(0, keysize, Type::tsize_t));
	arguments->push(new IntegerExp(0, next->size(e->loc), Type::tsize_t));
	e = new CallExp(e->loc, ec, arguments);
	e->type = next->arrayOf();
    }
    else if (ident == Id::rehash)
    {
	Expression *ec;
	Expressions *arguments;

	//LDC: Build arguments.
	static FuncDeclaration *aaRehash_fd = NULL;
	if(!aaRehash_fd) {
	    Arguments* args = new Arguments;
	    args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
	    args->push(new Argument(STCin, Type::typeinfo->type, NULL, NULL));
	    aaRehash_fd = FuncDeclaration::genCfunc(args, Type::tvoidptr, Id::aaRehash);
	}

	ec = new VarExp(0, aaRehash_fd);
	arguments = new Expressions();
	arguments->push(e->addressOf(sc));
    arguments->push(index->getInternalTypeInfo(sc));
	e = new CallExp(e->loc, ec, arguments);
	e->type = this;
    }
    else
    {
	e = Type::dotExp(sc, e, ident);
    }
    return e;
}

void TypeAArray::toDecoBuffer(OutBuffer *buf, int flag)
{
    Type::toDecoBuffer(buf, flag);
    index->toDecoBuffer(buf);
    next->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod);
}

void TypeAArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->writeByte('[');
    index->toCBuffer2(buf, hgs, 0);
    buf->writeByte(']');
}

Expression *TypeAArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeAArray::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeAArray::isZeroInit()
{
    return TRUE;
}

int TypeAArray::checkBoolean()
{
    return TRUE;
}

int TypeAArray::hasPointers()
{
    return TRUE;
}

MATCH TypeAArray::implicitConvTo(Type *to)
{
    //printf("TypeAArray::implicitConvTo(to = %s) this = %s\n", to->toChars(), toChars());
    if (equals(to))
	return MATCHexact;

    if (to->ty == Taarray)
    {	TypeAArray *ta = (TypeAArray *)to;

	if (!(next->mod == ta->next->mod || ta->next->mod == MODconst))
	    return MATCHnomatch;	// not const-compatible

	if (!(index->mod == ta->index->mod || ta->index->mod == MODconst))
	    return MATCHnomatch;	// not const-compatible

	MATCH m = next->constConv(ta->next);
	MATCH mi = index->constConv(ta->index);
	if (m != MATCHnomatch && mi != MATCHnomatch)
	{
	    if (m == MATCHexact && mod != to->mod)
		m = MATCHconst;
	    if (mi < m)
		m = mi;
	    return m;
	}
    }
    return Type::implicitConvTo(to);
}

MATCH TypeAArray::constConv(Type *to)
{
    if (to->ty == Taarray)
    {
	TypeAArray *taa = (TypeAArray *)to;
	MATCH mindex = index->constConv(taa->index);
	MATCH mkey = next->constConv(taa->next);
	// Pick the worst match
	return mkey < mindex ? mkey : mindex;
    }
    else
	return Type::constConv(to);
}

/***************************** TypePointer *****************************/

TypePointer::TypePointer(Type *t)
    : TypeNext(Tpointer, t)
{
}

Type *TypePointer::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
    {	t = new TypePointer(t);
	t->mod = mod;
    }
    return t;
}

Type *TypePointer::semantic(Loc loc, Scope *sc)
{
    //printf("TypePointer::semantic()\n");
    Type *n = next->semantic(loc, sc);
    switch (n->toBasetype()->ty)
    {
	case Ttuple:
	    error(loc, "can't have pointer to %s", n->toChars());
	    n = tint32;
	    break;
    }
    if (n != next)
	deco = NULL;
    next = n;
    if (mod == MODconst && !next->isInvariant())
	next = next->constOf();
    else if (mod == MODinvariant)
	next = next->invariantOf();
    return merge();
}


d_uns64 TypePointer::size(Loc loc)
{
    return PTRSIZE;
}

void TypePointer::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypePointer::toCBuffer2() next = %d\n", next->ty);
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    if (next->ty != Tfunction)
	buf->writeByte('*');
}

MATCH TypePointer::implicitConvTo(Type *to)
{
    //printf("TypePointer::implicitConvTo(to = %s) %s\n", to->toChars(), toChars());

    if (equals(to))
	return MATCHexact;
    if (to->ty == Tpointer)
    {	TypePointer *tp = (TypePointer *)to;
	assert(tp->next);

        if (!(next->mod == tp->next->mod || tp->next->mod == MODconst))
            return MATCHnomatch;        // not const-compatible

        /* Alloc conversion to void[]
         */
        if (next->ty != Tvoid && tp->next->ty == Tvoid)
        {
            return MATCHconvert;
        }

        MATCH m = next->constConv(tp->next);
        if (m != MATCHnomatch)
	{
	    if (m == MATCHexact && mod != to->mod)
		m = MATCHconst;
            return m;
	}

        /* Conversion of ptr to derived to ptr to base
         */
	int offset = 0;
        if (tp->next->isBaseOf(next, &offset) && offset == 0)
            return MATCHconvert;
    }
    return MATCHnomatch;
}

int TypePointer::isscalar()
{
    return TRUE;
}

Expression *TypePointer::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypePointer::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypePointer::isZeroInit()
{
    return 1;
}

int TypePointer::hasPointers()
{
    return TRUE;
}


/***************************** TypeReference *****************************/

TypeReference::TypeReference(Type *t)
    : TypeNext(Treference, t)
{
    // BUG: what about references to static arrays?
}

Type *TypeReference::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
    {	t = new TypeReference(t);
	t->mod = mod;
    }
    return t;
}

Type *TypeReference::semantic(Loc loc, Scope *sc)
{
    //printf("TypeReference::semantic()\n");
    Type *n = next->semantic(loc, sc);
    if (n != next)
	deco = NULL;
    next = n;
    if (mod == MODconst && !next->isInvariant())
	next = next->constOf();
    else if (mod == MODinvariant)
	next = next->invariantOf();
    return merge();
}


d_uns64 TypeReference::size(Loc loc)
{
    return PTRSIZE;
}

void TypeReference::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);
    buf->writeByte('&');
}

Expression *TypeReference::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeReference::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif

    // References just forward things along
    return next->dotExp(sc, e, ident);
}

Expression *TypeReference::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeReference::defaultInit() '%s'\n", toChars());
#endif
    Expression *e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeReference::isZeroInit()
{
    return 1;
}


/***************************** TypeFunction *****************************/

TypeFunction::TypeFunction(Arguments *parameters, Type *treturn, int varargs, enum LINK linkage)
    : TypeNext(Tfunction, treturn)
{
//if (!treturn) *(char*)0=0;
//    assert(treturn);
    assert(0 <= varargs && varargs <= 2);
    this->parameters = parameters;
    this->varargs = varargs;
    this->linkage = linkage;
    this->inuse = 0;
    this->isnothrow = false;
    this->ispure = false;
    this->isref = false;

    // LDC
    this->fty = NULL;
}

Type *TypeFunction::syntaxCopy()
{
    Type *treturn = next ? next->syntaxCopy() : NULL;
    Arguments *params = Argument::arraySyntaxCopy(parameters);
    TypeFunction *t = new TypeFunction(params, treturn, varargs, linkage);
    t->mod = mod;
    t->isnothrow = isnothrow;
    t->ispure = ispure;
    t->isref = isref;
    return t;
}

/*******************************
 * Returns:
 *	0	types are distinct
 *	1	this is covariant with t
 *	2	arguments match as far as overloading goes,
 *		but types are not covariant
 *	3	cannot determine covariance because of forward references
 */

int Type::covariant(Type *t)
{
#if 0
    printf("Type::covariant(t = %s) %s\n", t->toChars(), toChars());
    printf("deco = %p, %p\n", deco, t->deco);
//    printf("ty = %d\n", next->ty);
#endif

    int inoutmismatch = 0;

    TypeFunction *t1;
    TypeFunction *t2;

    if (equals(t))
	return 1;			// covariant

    if (ty != Tfunction || t->ty != Tfunction)
	goto Ldistinct;

    t1 = (TypeFunction *)this;
    t2 = (TypeFunction *)t;

    if (t1->varargs != t2->varargs)
	goto Ldistinct;

    if (t1->parameters && t2->parameters)
    {
	size_t dim = Argument::dim(t1->parameters);
	if (dim != Argument::dim(t2->parameters))
	    goto Ldistinct;

	for (size_t i = 0; i < dim; i++)
	{   Argument *arg1 = Argument::getNth(t1->parameters, i);
	    Argument *arg2 = Argument::getNth(t2->parameters, i);

	    if (!arg1->type->equals(arg2->type))
		goto Ldistinct;
	    if ((arg1->storageClass & ~STCscope) != (arg2->storageClass & ~STCscope))
		inoutmismatch = 1;
	    // We can add scope, but not subtract it
	    if (!(arg1->storageClass & STCscope) && (arg2->storageClass & STCscope))
		inoutmismatch = 1;
	}
    }
    else if (t1->parameters != t2->parameters)
	goto Ldistinct;

    // The argument lists match
    if (inoutmismatch)
	goto Lnotcovariant;
    if (t1->linkage != t2->linkage)
	goto Lnotcovariant;

  {
    // Return types
    Type *t1n = t1->next;
    Type *t2n = t2->next;

    if (t1n->equals(t2n))
	goto Lcovariant;
    if (t1n->ty == Tclass && t2n->ty == Tclass)
    {
	/* If same class type, but t2n is const, then it's
	 * covariant. Do this test first because it can work on
	 * forward references.
	 */
	if (((TypeClass *)t1n)->sym == ((TypeClass *)t2n)->sym &&
	    t2n->mod == MODconst)
	    goto Lcovariant;

	// If t1n is forward referenced:
	ClassDeclaration *cd = ((TypeClass *)t1n)->sym;
	if (!cd->baseClass && cd->baseclasses.dim && !cd->isInterfaceDeclaration())
	{
	    return 3;
	}
    }
    if (t1n->implicitConvTo(t2n))
	goto Lcovariant;
  }
    goto Lnotcovariant;

Lcovariant:
    /* Can convert pure to impure, and nothrow to throw
     */
    if (!t1->ispure && t2->ispure)
	goto Lnotcovariant;

    if (!t1->isnothrow && t2->isnothrow)
	goto Lnotcovariant;

    if (t1->isref != t2->isref)
	goto Lnotcovariant;

    //printf("\tcovaraint: 1\n");
    return 1;

Ldistinct:
    //printf("\tcovaraint: 0\n");
    return 0;

Lnotcovariant:
    //printf("\tcovaraint: 2\n");
    return 2;
}

void TypeFunction::toDecoBuffer(OutBuffer *buf, int flag)
{   unsigned char mc;

    //printf("TypeFunction::toDecoBuffer() this = %p %s\n", this, toChars());
    //static int nest; if (++nest == 50) *(char*)0=0;
    if (inuse)
    {	inuse = 2;		// flag error to caller
	return;
    }
    inuse++;
#if 1
    if (mod & MODshared)
	buf->writeByte('O');
    if (mod & MODconst)
	buf->writeByte('x');
    else if (mod & MODinvariant)
	buf->writeByte('y');
#endif
    switch (linkage)
    {
	case LINKd:		mc = 'F';	break;
	case LINKc:		mc = 'U';	break;
	case LINKwindows:	mc = 'W';	break;
	case LINKpascal:	mc = 'V';	break;
	case LINKcpp:		mc = 'R';	break;

    // LDC
    case LINKintrinsic: mc = 'Q';   break;

	default:
	    assert(0);
    }
    buf->writeByte(mc);
    if (ispure || isnothrow || isref)
    {
	if (ispure)
	    buf->writestring("Na");
	if (isnothrow)
	    buf->writestring("Nb");
	if (isref)
	    buf->writestring("Nc");
    }
    // Write argument types
    Argument::argsToDecoBuffer(buf, parameters);
    //if (buf->data[buf->offset - 1] == '@') halt();
    buf->writeByte('Z' - varargs);	// mark end of arg list
    next->toDecoBuffer(buf);
    inuse--;
}

void TypeFunction::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
    //printf("TypeFunction::toCBuffer() this = %p %s\n", this, toChars());
    const char *p = NULL;

    if (inuse)
    {	inuse = 2;		// flag error to caller
	return;
    }
    inuse++;

    /* Use 'storage class' style for attributes
     */
    if (mod & MODconst)
	buf->writestring("const ");
    if (mod & MODinvariant)
	buf->writestring("invariant ");
    if (mod & MODshared)
	buf->writestring("shared ");

    if (ispure)
	buf->writestring("pure ");
    if (isnothrow)
	buf->writestring("nothrow ");
    if (isref)
	buf->writestring("ref ");

    if (next && (!ident || ident->toHChars2() == ident->toChars()))
	next->toCBuffer2(buf, hgs, 0);
    if (hgs->ddoc != 1)
    {
	switch (linkage)
	{
	    case LINKd:		p = NULL;	break;
	    case LINKc:		p = "C ";	break;
	    case LINKwindows:	p = "Windows ";	break;
	    case LINKpascal:	p = "Pascal ";	break;
	    case LINKcpp:	p = "C++ ";	break;

        // LDC
        case LINKintrinsic: p = "Intrinsic"; break;

	    default:
		assert(0);
	}
    }

    if (!hgs->hdrgen && p)
	buf->writestring(p);
    if (ident)
    {   buf->writeByte(' ');
	buf->writestring(ident->toHChars2());
    }
    Argument::argsToCBuffer(buf, hgs, parameters, varargs);
    inuse--;
}

void TypeFunction::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypeFunction::toCBuffer2() this = %p %s\n", this, toChars());
    const char *p = NULL;

    if (inuse)
    {	inuse = 2;		// flag error to caller
	return;
    }
    inuse++;
    if (next)
	next->toCBuffer2(buf, hgs, 0);
    if (hgs->ddoc != 1)
    {
	switch (linkage)
	{
	    case LINKd:		p = NULL;	break;
	    case LINKc:		p = "C ";	break;
	    case LINKwindows:	p = "Windows ";	break;
	    case LINKpascal:	p = "Pascal ";	break;
	    case LINKcpp:	p = "C++ ";	break;

        // LDC
        case LINKintrinsic: p = "Intrinsic"; break;

	    default:
		assert(0);
	}
    }

    if (!hgs->hdrgen && p)
	buf->writestring(p);
    buf->writestring(" function");
    Argument::argsToCBuffer(buf, hgs, parameters, varargs);

    /* Use postfix style for attributes
     */
    if (mod != this->mod)
    {
	if (mod & MODconst)
	    buf->writestring(" const");
	if (mod & MODinvariant)
	    buf->writestring(" invariant");
	if (mod & MODshared)
	    buf->writestring(" shared");
    }
    if (ispure)
	buf->writestring(" pure");
    if (isnothrow)
	buf->writestring(" nothrow");
    if (isref)
	buf->writestring(" ref");

    inuse--;
}

Type *TypeFunction::semantic(Loc loc, Scope *sc)
{
    if (deco)			// if semantic() already run
    {
	//printf("already done\n");
	return this;
    }
    //printf("TypeFunction::semantic() this = %p\n", this);

    TypeFunction *tf = (TypeFunction *)mem.malloc(sizeof(TypeFunction));
    memcpy(tf, this, sizeof(TypeFunction));
    if (parameters)
    {	tf->parameters = (Arguments *)parameters->copy();
	for (size_t i = 0; i < parameters->dim; i++)
	{   Argument *arg = (Argument *)parameters->data[i];
	    Argument *cpy = (Argument *)mem.malloc(sizeof(Argument));
	    memcpy(cpy, arg, sizeof(Argument));
	    tf->parameters->data[i] = (void *)cpy;
	}
    }

    if (sc->stc & STCpure)
	tf->ispure = TRUE;
    if (sc->stc & STCnothrow)
	tf->isnothrow = TRUE;
    if (sc->stc & STCref)
	tf->isref = TRUE;

    tf->linkage = sc->linkage;
    if (!tf->next)
    {
	assert(global.errors);
	tf->next = tvoid;
    }
    tf->next = tf->next->semantic(loc,sc);
    if (tf->next->toBasetype()->ty == Tsarray)
    {	error(loc, "functions cannot return static array %s", tf->next->toChars());
	tf->next = Type::terror;
    }
    if (tf->next->toBasetype()->ty == Tfunction)
    {	error(loc, "functions cannot return a function");
	tf->next = Type::terror;
    }
    if (tf->next->toBasetype()->ty == Ttuple)
    {	error(loc, "functions cannot return a tuple");
	tf->next = Type::terror;
    }
    if (tf->next->isauto() && !(sc->flags & SCOPEctor))
	error(loc, "functions cannot return auto %s", tf->next->toChars());

    if (tf->parameters)
    {	size_t dim = Argument::dim(tf->parameters);

	for (size_t i = 0; i < dim; i++)
	{   Argument *arg = Argument::getNth(tf->parameters, i);

	    tf->inuse++;
	    arg->type = arg->type->semantic(loc,sc);
	    if (tf->inuse == 1) tf->inuse--;

	    if (arg->storageClass & (STCconst | STCin))
	    {
		if (!arg->type->isInvariant())
		    arg->type = arg->type->constOf();
	    }
	    else if (arg->storageClass & STCinvariant)
		arg->type = arg->type->invariantOf();

	    if (arg->storageClass & (STCauto | STCalias | STCstatic))
	    {
		if (!arg->type)
		    continue;
	    }

	    Type *t = arg->type->toBasetype();

	    if (arg->storageClass & (STCout | STCref | STClazy))
	    {
		if (t->ty == Tsarray)
		    error(loc, "cannot have out or ref parameter of type %s", t->toChars());
		if (arg->storageClass & STCout && arg->type->mod)
		    error(loc, "cannot have const/invariant out parameter of type %s", t->toChars());
	    }
	    if (!(arg->storageClass & STClazy) && t->ty == Tvoid)
		error(loc, "cannot have parameter of type %s", arg->type->toChars());

	    if (arg->defaultArg)
	    {
		arg->defaultArg = arg->defaultArg->semantic(sc);
		arg->defaultArg = resolveProperties(sc, arg->defaultArg);
		arg->defaultArg = arg->defaultArg->implicitCastTo(sc, arg->type);
	    }

	    /* If arg turns out to be a tuple, the number of parameters may
	     * change.
	     */
	    if (t->ty == Ttuple)
	    {	dim = Argument::dim(tf->parameters);
		i--;
	    }
	}
    }
    tf->deco = tf->merge()->deco;

    if (tf->inuse)
    {	error(loc, "recursive type");
	tf->inuse = 0;
	return terror;
    }

    if (tf->varargs == 1 && tf->linkage != LINKd && Argument::dim(tf->parameters) == 0)
	error(loc, "variadic functions with non-D linkage must have at least one parameter");

    /* Don't return merge(), because arg identifiers and default args
     * can be different
     * even though the types match
     */
    return tf;
}

/********************************
 * 'args' are being matched to function 'this'
 * Determine match level.
 * Returns:
 *	MATCHxxxx
 */

int TypeFunction::callMatch(Expression *ethis, Expressions *args)
{
    //printf("TypeFunction::callMatch() %s\n", toChars());
    MATCH match = MATCHexact;		// assume exact match

    if (ethis)
    {	Type *t = ethis->type;
	if (t->toBasetype()->ty == Tpointer)
	    t = t->toBasetype()->nextOf();	// change struct* to struct
	if (t->mod != mod)
	{
	    if (mod == MODconst)
		match = MATCHconst;
	    else
		return MATCHnomatch;
	}
    }

    size_t nparams = Argument::dim(parameters);
    size_t nargs = args ? args->dim : 0;
    if (nparams == nargs)
	;
    else if (nargs > nparams)
    {
	if (varargs == 0)
	    goto Nomatch;		// too many args; no match
	match = MATCHconvert;		// match ... with a "conversion" match level
    }

    for (size_t u = 0; u < nparams; u++)
    {	MATCH m;
	Expression *arg;

	// BUG: what about out and ref?

	Argument *p = Argument::getNth(parameters, u);
	assert(p);
	if (u >= nargs)
	{
	    if (p->defaultArg)
		continue;
	    if (varargs == 2 && u + 1 == nparams)
		goto L1;
	    goto Nomatch;		// not enough arguments
	}
	arg = (Expression *)args->data[u];
	assert(arg);

	// Non-lvalues do not match ref or out parameters
	if (p->storageClass & (STCref | STCout) && !arg->isLvalue())
	    goto Nomatch;

	if (p->storageClass & STClazy && p->type->ty == Tvoid &&
		arg->type->ty != Tvoid)
	    m = MATCHconvert;
	else
	    m = arg->implicitConvTo(p->type);
	//printf("\tm = %d\n", m);
	if (m == MATCHnomatch)			// if no match
	{
	  L1:
	    if (varargs == 2 && u + 1 == nparams)	// if last varargs param
	    {	Type *tb = p->type->toBasetype();
		TypeSArray *tsa;
		integer_t sz;

		switch (tb->ty)
		{
		    case Tsarray:
			tsa = (TypeSArray *)tb;
			sz = tsa->dim->toInteger();
			if (sz != nargs - u)
			    goto Nomatch;
		    case Tarray:
		    {	TypeArray *ta = (TypeArray *)tb;
			for (; u < nargs; u++)
			{
			    arg = (Expression *)args->data[u];
			    assert(arg);
#if 1
			    /* If lazy array of delegates,
			     * convert arg(s) to delegate(s)
			     */
			    Type *tret = p->isLazyArray();
			    if (tret)
			    {
				if (ta->next->equals(arg->type))
				{   m = MATCHexact;
				}
				else
				{
				    m = arg->implicitConvTo(tret);
				    if (m == MATCHnomatch)
				    {
					if (tret->toBasetype()->ty == Tvoid)
					    m = MATCHconvert;
				    }
				}
			    }
			    else
				m = arg->implicitConvTo(ta->next);
#else
			    m = arg->implicitConvTo(ta->next);
#endif
			    if (m == MATCHnomatch)
				goto Nomatch;
			    if (m < match)
				match = m;
			}
			goto Ldone;
		    }
		    case Tclass:
			// Should see if there's a constructor match?
			// Or just leave it ambiguous?
			goto Ldone;

		    default:
			goto Nomatch;
		}
	    }
	    goto Nomatch;
	}
	if (m < match)
	    match = m;			// pick worst match
    }

Ldone:
    //printf("match = %d\n", match);
    return match;

Nomatch:
    //printf("no match\n");
    return MATCHnomatch;
}

Type *TypeFunction::reliesOnTident()
{
    if (parameters)
    {
	for (size_t i = 0; i < parameters->dim; i++)
	{   Argument *arg = (Argument *)parameters->data[i];
	    Type *t = arg->type->reliesOnTident();
	    if (t)
		return t;
	}
    }
    return next->reliesOnTident();
}

/***************************
 * Examine function signature for parameter p and see if
 * p can 'escape' the scope of the function.
 */

bool TypeFunction::parameterEscapes(Argument *p)
{

    /* Scope parameters do not escape.
     * Allow 'lazy' to imply 'scope' -
     * lazy parameters can be passed along
     * as lazy parameters to the next function, but that isn't
     * escaping.
     */
    if (p->storageClass & (STCscope | STClazy))
	return FALSE;

    if (ispure)
    {	/* With pure functions, we need only be concerned if p escapes
	 * via any return statement.
	 */
	Type* tret = nextOf()->toBasetype();
	if (!isref && !tret->hasPointers())
	{   /* The result has no references, so p could not be escaping
	     * that way.
	     */
	    return FALSE;
	}
    }

    /* Assume it escapes in the absence of better information.
     */
    return TRUE;
}

/***************************** TypeDelegate *****************************/

TypeDelegate::TypeDelegate(Type *t)
    : TypeNext(Tfunction, t)
{
    ty = Tdelegate;
}

Type *TypeDelegate::syntaxCopy()
{
    Type *t = next->syntaxCopy();
    if (t == next)
	t = this;
    else
    {	t = new TypeDelegate(t);
	t->mod = mod;
    }
    return t;
}

Type *TypeDelegate::semantic(Loc loc, Scope *sc)
{
    if (deco)			// if semantic() already run
    {
	//printf("already done\n");
	return this;
    }
    next = next->semantic(loc,sc);
    return merge();
}

d_uns64 TypeDelegate::size(Loc loc)
{
    return PTRSIZE * 2;
}

// LDC added, no reason to align to 2*PTRSIZE
unsigned TypeDelegate::alignsize()
{
    // A Delegate consists of two ptr values, so align it on pointer size
    // boundary
    return PTRSIZE;
}

void TypeDelegate::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    TypeFunction *tf = (TypeFunction *)next;

    tf->next->toCBuffer2(buf, hgs, 0);
    buf->writestring(" delegate");
    Argument::argsToCBuffer(buf, hgs, tf->parameters, tf->varargs);
}

Expression *TypeDelegate::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeDelegate::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeDelegate::isZeroInit()
{
    return 1;
}

int TypeDelegate::checkBoolean()
{
    return TRUE;
}

Expression *TypeDelegate::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeDelegate::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (ident == Id::ptr)
    {
    e = new GEPExp(e->loc, e, ident, 0);
	e->type = tvoidptr;
	return e;
    }
    else if (ident == Id::funcptr)
    {
    e = new GEPExp(e->loc, e, ident, 1);
    e->type = tvoidptr;
	return e;
    }
    else
    {
	e = Type::dotExp(sc, e, ident);
    }
    return e;
}

int TypeDelegate::hasPointers()
{
    return TRUE;
}



/***************************** TypeQualified *****************************/

TypeQualified::TypeQualified(TY ty, Loc loc)
    : Type(ty)
{
    this->loc = loc;
}

void TypeQualified::syntaxCopyHelper(TypeQualified *t)
{
    //printf("TypeQualified::syntaxCopyHelper(%s) %s\n", t->toChars(), toChars());
    idents.setDim(t->idents.dim);
    for (int i = 0; i < idents.dim; i++)
    {
	Identifier *id = (Identifier *)t->idents.data[i];
	if (id->dyncast() == DYNCAST_DSYMBOL)
	{
	    TemplateInstance *ti = (TemplateInstance *)id;

	    ti = (TemplateInstance *)ti->syntaxCopy(NULL);
	    id = (Identifier *)ti;
	}
	idents.data[i] = id;
    }
}


void TypeQualified::addIdent(Identifier *ident)
{
    idents.push(ident);
}

void TypeQualified::toCBuffer2Helper(OutBuffer *buf, HdrGenState *hgs)
{
    int i;

    for (i = 0; i < idents.dim; i++)
    {	Identifier *id = (Identifier *)idents.data[i];

	buf->writeByte('.');

	if (id->dyncast() == DYNCAST_DSYMBOL)
	{
	    TemplateInstance *ti = (TemplateInstance *)id;
	    ti->toCBuffer(buf, hgs);
	}
	else
	    buf->writestring(id->toChars());
    }
}

d_uns64 TypeQualified::size(Loc loc)
{
    error(this->loc, "size of type %s is not known", toChars());
    return 1;
}

/*************************************
 * Takes an array of Identifiers and figures out if
 * it represents a Type or an Expression.
 * Output:
 *	if expression, *pe is set
 *	if type, *pt is set
 */

void TypeQualified::resolveHelper(Loc loc, Scope *sc,
	Dsymbol *s, Dsymbol *scopesym,
	Expression **pe, Type **pt, Dsymbol **ps)
{
    VarDeclaration *v;
    EnumMember *em;
    TupleDeclaration *td;
    Expression *e;

#if 0
    printf("TypeQualified::resolveHelper(sc = %p, idents = '%s')\n", sc, toChars());
    if (scopesym)
	printf("\tscopesym = '%s'\n", scopesym->toChars());
#endif
    *pe = NULL;
    *pt = NULL;
    *ps = NULL;
    if (s)
    {
	//printf("\t1: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
	s->checkDeprecated(loc, sc);		// check for deprecated aliases
	s = s->toAlias();
	//printf("\t2: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
	for (int i = 0; i < idents.dim; i++)
	{
	    Identifier *id = (Identifier *)idents.data[i];
	    Dsymbol *sm = s->searchX(loc, sc, id);
	    //printf("\t3: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
	    //printf("\tgetType = '%s'\n", s->getType()->toChars());
	    if (!sm)
	    {	Type *t;

		v = s->isVarDeclaration();
		if (v && id == Id::length)
		{
		    e = v->getConstInitializer();
		    if (!e)
			e = new VarExp(loc, v);
		    t = e->type;
		    if (!t)
			goto Lerror;
		    goto L3;
		}
		t = s->getType();
		if (!t && s->isDeclaration())
		    t = s->isDeclaration()->type;
		if (t)
		{
		    sm = t->toDsymbol(sc);
		    if (sm)
		    {	sm = sm->search(loc, id, 0);
			if (sm)
			    goto L2;
		    }
		    //e = t->getProperty(loc, id);
		    e = new TypeExp(loc, t);
		    e = t->dotExp(sc, e, id);
		    i++;
		L3:
		    for (; i < idents.dim; i++)
		    {
			id = (Identifier *)idents.data[i];
			//printf("e: '%s', id: '%s', type = %p\n", e->toChars(), id->toChars(), e->type);
			if (id == Id::offsetof)
			{   e = new DotIdExp(e->loc, e, id);
			    e = e->semantic(sc);
			}
			else
			    e = e->type->dotExp(sc, e, id);
		    }
		    *pe = e;
		}
		else
	          Lerror:
		    error(loc, "identifier '%s' of '%s' is not defined", id->toChars(), toChars());
		return;
	    }
	L2:
	    s = sm->toAlias();
	}

	v = s->isVarDeclaration();
	if (v)
	{
#if 0
	    // It's not a type, it's an expression
	    Expression *e = v->getConstInitializer();
	    if (e)
	    {
		*pe = e->copy();	// make copy so we can change loc
		(*pe)->loc = loc;
	    }
	    else
#endif
	    {
#if 0
		WithScopeSymbol *withsym;
		if (scopesym && (withsym = scopesym->isWithScopeSymbol()) != NULL)
		{
		    // Same as wthis.ident
		    e = new VarExp(loc, withsym->withstate->wthis);
		    e = new DotIdExp(loc, e, ident);
		    //assert(0);	// BUG: should handle this
		}
		else
#endif
		    *pe = new VarExp(loc, v);
	    }
	    return;
	}
	em = s->isEnumMember();
	if (em)
	{
	    // It's not a type, it's an expression
	    *pe = em->value->copy();
	    return;
	}

L1:
	Type *t = s->getType();
	if (!t)
	{
	    // If the symbol is an import, try looking inside the import
	    Import *si;

	    si = s->isImport();
	    if (si)
	    {
		s = si->search(loc, s->ident, 0);
		if (s && s != si)
		    goto L1;
		s = si;
	    }
	    *ps = s;
	    return;
	}
	if (t->ty == Tinstance && t != this && !t->deco)
	{   error(loc, "forward reference to '%s'", t->toChars());
	    return;
	}

	if (t != this)
	{
	    if (t->reliesOnTident())
	    {
		Scope *scx;

		for (scx = sc; 1; scx = scx->enclosing)
		{
		    if (!scx)
		    {   error(loc, "forward reference to '%s'", t->toChars());
			return;
		    }
		    if (scx->scopesym == scopesym)
			break;
		}
		t = t->semantic(loc, scx);
		//((TypeIdentifier *)t)->resolve(loc, scx, pe, &t, ps);
	    }
	}
	if (t->ty == Ttuple)
	    *pt = t->syntaxCopy();
	else
	    *pt = t->merge();
    }
    if (!s)
    {
	error(loc, "identifier '%s' is not defined", toChars());
    }
}

/***************************** TypeIdentifier *****************************/

TypeIdentifier::TypeIdentifier(Loc loc, Identifier *ident)
    : TypeQualified(Tident, loc)
{
    this->ident = ident;
}


Type *TypeIdentifier::syntaxCopy()
{
    TypeIdentifier *t;

    t = new TypeIdentifier(loc, ident);
    t->syntaxCopyHelper(this);
    t->mod = mod;
    return t;
}

void TypeIdentifier::toDecoBuffer(OutBuffer *buf, int flag)
{   unsigned len;
    char *name;

    Type::toDecoBuffer(buf, flag);
    name = ident->toChars();
    len = strlen(name);
    buf->printf("%d%s", len, name);
}

void TypeIdentifier::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(this->ident->toChars());
    toCBuffer2Helper(buf, hgs);
}

/*************************************
 * Takes an array of Identifiers and figures out if
 * it represents a Type or an Expression.
 * Output:
 *	if expression, *pe is set
 *	if type, *pt is set
 */

void TypeIdentifier::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{   Dsymbol *s;
    Dsymbol *scopesym;

    //printf("TypeIdentifier::resolve(sc = %p, idents = '%s')\n", sc, toChars());
    s = sc->search(loc, ident, &scopesym);
    resolveHelper(loc, sc, s, scopesym, pe, pt, ps);
    if (*pt && mod)
    {
	if (mod & MODconst)
	    *pt = (*pt)->constOf();
	else if (mod & MODinvariant)
	    *pt = (*pt)->invariantOf();
    }
}

/*****************************************
 * See if type resolves to a symbol, if so,
 * return that symbol.
 */

Dsymbol *TypeIdentifier::toDsymbol(Scope *sc)
{
    //printf("TypeIdentifier::toDsymbol('%s')\n", toChars());
    if (!sc)
	return NULL;
    //printf("ident = '%s'\n", ident->toChars());

    Dsymbol *scopesym;
    Dsymbol *s = sc->search(loc, ident, &scopesym);
    if (s)
    {
	for (int i = 0; i < idents.dim; i++)
	{
	    Identifier *id = (Identifier *)idents.data[i];
	    s = s->searchX(loc, sc, id);
	    if (!s)                 // failed to find a symbol
	    {	//printf("\tdidn't find a symbol\n");
		break;
	    }
	}
    }
    return s;
}

Type *TypeIdentifier::semantic(Loc loc, Scope *sc)
{
    Type *t;
    Expression *e;
    Dsymbol *s;

    //printf("TypeIdentifier::semantic(%s)\n", toChars());
    resolve(loc, sc, &e, &t, &s);
    if (t)
    {
	//printf("\tit's a type %d, %s, %s\n", t->ty, t->toChars(), t->deco);

	if (t->ty == Ttypedef)
	{   TypeTypedef *tt = (TypeTypedef *)t;

	    if (tt->sym->sem == 1)
		error(loc, "circular reference of typedef %s", tt->toChars());
	}
	if (isConst())
	    t = t->constOf();
	else if (isInvariant())
	    t = t->invariantOf();
    }
    else
    {
#ifdef DEBUG
	if (!global.gag)
	    printf("1: ");
#endif
	if (s)
	{
	    s->error(loc, "is used as a type");
	    //halt();
	}
	else
	    error(loc, "%s is used as a type", toChars());
	t = tvoid;
    }
    //t->print();
    return t;
}

Type *TypeIdentifier::reliesOnTident()
{
    return this;
}

Expression *TypeIdentifier::toExpression()
{
    Expression *e = new IdentifierExp(loc, ident);
    for (int i = 0; i < idents.dim; i++)
    {
	Identifier *id = (Identifier *)idents.data[i];
	e = new DotIdExp(loc, e, id);
    }

    return e;
}

/***************************** TypeInstance *****************************/

TypeInstance::TypeInstance(Loc loc, TemplateInstance *tempinst)
    : TypeQualified(Tinstance, loc)
{
    this->tempinst = tempinst;
}

Type *TypeInstance::syntaxCopy()
{
    //printf("TypeInstance::syntaxCopy() %s, %d\n", toChars(), idents.dim);
    TypeInstance *t;

    t = new TypeInstance(loc, (TemplateInstance *)tempinst->syntaxCopy(NULL));
    t->syntaxCopyHelper(this);
    t->mod = mod;
    return t;
}


void TypeInstance::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    tempinst->toCBuffer(buf, hgs);
    toCBuffer2Helper(buf, hgs);
}

void TypeInstance::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    // Note close similarity to TypeIdentifier::resolve()

    Dsymbol *s;

    *pe = NULL;
    *pt = NULL;
    *ps = NULL;

#if 0
    if (!idents.dim)
    {
	error(loc, "template instance '%s' has no identifier", toChars());
	return;
    }
#endif
    //id = (Identifier *)idents.data[0];
    //printf("TypeInstance::resolve(sc = %p, idents = '%s')\n", sc, id->toChars());
    s = tempinst;
    if (s)
	s->semantic(sc);
    resolveHelper(loc, sc, s, NULL, pe, pt, ps);
    if (*pt && mod)
    {
	if (mod & MODconst)
	    *pt = (*pt)->constOf();
	else if (mod & MODinvariant)
	    *pt = (*pt)->invariantOf();
    }
    //printf("pt = '%s'\n", (*pt)->toChars());
}

Type *TypeInstance::semantic(Loc loc, Scope *sc)
{
    Type *t;
    Expression *e;
    Dsymbol *s;

    //printf("TypeInstance::semantic(%s)\n", toChars());

    if (sc->parameterSpecialization)
    {
	unsigned errors = global.errors;
	global.gag++;

	resolve(loc, sc, &e, &t, &s);

	global.gag--;
	if (errors != global.errors)
	{   if (global.gag == 0)
		global.errors = errors;
	    return this;
	}
    }
    else
	resolve(loc, sc, &e, &t, &s);

    if (!t)
    {
#ifdef DEBUG
	printf("2: ");
#endif
	error(loc, "%s is used as a type", toChars());
	t = tvoid;
    }
    return t;
}


/***************************** TypeTypeof *****************************/

TypeTypeof::TypeTypeof(Loc loc, Expression *exp)
	: TypeQualified(Ttypeof, loc)
{
    this->exp = exp;
}

Type *TypeTypeof::syntaxCopy()
{
    TypeTypeof *t;

    t = new TypeTypeof(loc, exp->syntaxCopy());
    t->syntaxCopyHelper(this);
    t->mod = mod;
    return t;
}

Dsymbol *TypeTypeof::toDsymbol(Scope *sc)
{
    Type *t;

    t = semantic(loc, sc);
    if (t == this)
	return NULL;
    return t->toDsymbol(sc);
}

void TypeTypeof::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring("typeof(");
    exp->toCBuffer(buf, hgs);
    buf->writeByte(')');
    toCBuffer2Helper(buf, hgs);
}

Type *TypeTypeof::semantic(Loc loc, Scope *sc)
{   Expression *e;
    Type *t;

    //printf("TypeTypeof::semantic() %p\n", this);

    //static int nest; if (++nest == 50) *(char*)0=0;

#if 0
    /* Special case for typeof(this) and typeof(super) since both
     * should work even if they are not inside a non-static member function
     */
    if (exp->op == TOKthis || exp->op == TOKsuper)
    {
	// Find enclosing struct or class
	for (Dsymbol *s = sc->parent; 1; s = s->parent)
	{
	    ClassDeclaration *cd;
	    StructDeclaration *sd;

	    if (!s)
	    {
		error(loc, "%s is not in a struct or class scope", exp->toChars());
		goto Lerr;
	    }
	    cd = s->isClassDeclaration();
	    if (cd)
	    {
		if (exp->op == TOKsuper)
		{
		    cd = cd->baseClass;
		    if (!cd)
		    {	error(loc, "class %s has no 'super'", s->toChars());
			goto Lerr;
		    }
		}
		t = cd->type;
		break;
	    }
	    sd = s->isStructDeclaration();
	    if (sd)
	    {
		if (exp->op == TOKsuper)
		{
		    error(loc, "struct %s has no 'super'", sd->toChars());
		    goto Lerr;
		}
		t = sd->type->pointerTo();
		break;
	    }
	}
    }
    else
#endif
    {
	sc->intypeof++;
	exp = exp->semantic(sc);
	sc->intypeof--;
	if (exp->op == TOKtype)
	{
	    error(loc, "argument %s to typeof is not an expression", exp->toChars());
	}
	t = exp->type;
	if (!t)
	{
	    error(loc, "expression (%s) has no type", exp->toChars());
	    goto Lerr;
	}
	if (t->ty == Ttypeof)
	    error(loc, "forward reference to %s", toChars());

	/* typeof should reflect the true type,
	 * not what 'auto' would have gotten us.
	 */
	//t = t->toHeadMutable();
    }

    if (idents.dim)
    {
	Dsymbol *s = t->toDsymbol(sc);
	for (size_t i = 0; i < idents.dim; i++)
	{
	    if (!s)
		break;
	    Identifier *id = (Identifier *)idents.data[i];
	    s = s->searchX(loc, sc, id);
	}
	if (s)
	{
	    t = s->getType();
	    if (!t)
	    {	error(loc, "%s is not a type", s->toChars());
		goto Lerr;
	    }
	}
	else
	{   error(loc, "cannot resolve .property for %s", toChars());
	    goto Lerr;
	}
    }
    return t;

Lerr:
    return tvoid;
}

d_uns64 TypeTypeof::size(Loc loc)
{
    if (exp->type)
	return exp->type->size(loc);
    else
	return TypeQualified::size(loc);
}



/***************************** TypeReturn *****************************/

TypeReturn::TypeReturn(Loc loc)
	: TypeQualified(Treturn, loc)
{
}

Type *TypeReturn::syntaxCopy()
{
    TypeReturn *t = new TypeReturn(loc);
    t->syntaxCopyHelper(this);
    t->mod = mod;
    return t;
}

Dsymbol *TypeReturn::toDsymbol(Scope *sc)
{
    Type *t = semantic(0, sc);
    if (t == this)
	return NULL;
    return t->toDsymbol(sc);
}

Type *TypeReturn::semantic(Loc loc, Scope *sc)
{
    Type *t;
    if (!sc->func)
    {	error(loc, "typeof(return) must be inside function");
	goto Lerr;
    }
    t = sc->func->type->nextOf();

    if (mod & MODinvariant)
	t = t->invariantOf();
    else if (mod & MODconst)
	t = t->constOf();

    if (idents.dim)
    {
	Dsymbol *s = t->toDsymbol(sc);
	for (size_t i = 0; i < idents.dim; i++)
	{
	    if (!s)
		break;
	    Identifier *id = (Identifier *)idents.data[i];
	    s = s->searchX(loc, sc, id);
	}
	if (s)
	{
	    t = s->getType();
	    if (!t)
	    {	error(loc, "%s is not a type", s->toChars());
		goto Lerr;
	    }
	}
	else
	{   error(loc, "cannot resolve .property for %s", toChars());
	    goto Lerr;
	}
    }
    return t;

Lerr:
    return terror;
}

void TypeReturn::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring("typeof(return)");
    toCBuffer2Helper(buf, hgs);
}


/***************************** TypeEnum *****************************/

TypeEnum::TypeEnum(EnumDeclaration *sym)
	: Type(Tenum)
{
    this->sym = sym;
}

char *TypeEnum::toChars()
{
    if (mod)
	return Type::toChars();
    return sym->toChars();
}

Type *TypeEnum::syntaxCopy()
{
    return this;
}

Type *TypeEnum::semantic(Loc loc, Scope *sc)
{
    //printf("TypeEnum::semantic() %s\n", toChars());
    sym->semantic(sc);
    return merge();
}

d_uns64 TypeEnum::size(Loc loc)
{
    if (!sym->memtype)
    {
	error(loc, "enum %s is forward referenced", sym->toChars());
	return 4;
    }
    return sym->memtype->size(loc);
}

unsigned TypeEnum::alignsize()
{
    if (!sym->memtype)
    {
#ifdef DEBUG
	printf("1: ");
#endif
	error(0, "enum %s is forward referenced", sym->toChars());
	return 4;
    }
    return sym->memtype->alignsize();
}

Dsymbol *TypeEnum::toDsymbol(Scope *sc)
{
    return sym;
}

Type *TypeEnum::toBasetype()
{
    if (!sym->memtype)
    {
#ifdef DEBUG
	printf("2: ");
#endif
	error(sym->loc, "enum %s is forward referenced", sym->toChars());
	return tint32;
    }
    return sym->memtype->toBasetype();
}

void TypeEnum::toDecoBuffer(OutBuffer *buf, int flag)
{
    const char *name = sym->mangle();
    Type::toDecoBuffer(buf, flag);
    buf->printf("%s", name);
}

void TypeEnum::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(sym->toChars());
}

Expression *TypeEnum::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeEnum::dotExp(e = '%s', ident = '%s') '%s'\n", e->toChars(), ident->toChars(), toChars());
#endif
    Dsymbol *s = sym->search(e->loc, ident, 0);
    if (!s)
    {
	return getProperty(e->loc, ident);
    }
    EnumMember *m = s->isEnumMember();
    Expression *em = m->value->copy();
    em->loc = e->loc;
    return em;
}

Expression *TypeEnum::getProperty(Loc loc, Identifier *ident)
{   Expression *e;

    if (ident == Id::max)
    {
	if (!sym->maxval)
	    goto Lfwd;
	e = sym->maxval;
    }
    else if (ident == Id::min)
    {
	if (!sym->minval)
	    goto Lfwd;
	e = sym->minval;
    }
    else if (ident == Id::init)
    {
	e = defaultInit(loc);
    }
    else if (ident == Id::stringof)
    {	char *s = toChars();
	e = new StringExp(loc, s, strlen(s), 'c');
	Scope sc;
	e = e->semantic(&sc);
    }
    else
    {
	e = toBasetype()->getProperty(loc, ident);
    }
    return e;

Lfwd:
    error(loc, "forward reference of %s.%s", toChars(), ident->toChars());
    return new IntegerExp(0, 0, this);
}

int TypeEnum::isintegral()
{
    return 1;
}

int TypeEnum::isfloating()
{
    return 0;
}

int TypeEnum::isunsigned()
{
    return sym->memtype->isunsigned();
}

int TypeEnum::isscalar()
{
    return 1;
    //return sym->memtype->isscalar();
}

MATCH TypeEnum::implicitConvTo(Type *to)
{   MATCH m;

    //printf("TypeEnum::implicitConvTo()\n");
    if (ty == to->ty && sym == ((TypeEnum *)to)->sym)
	m = (mod == to->mod) ? MATCHexact : MATCHconst;
    else if (sym->memtype->implicitConvTo(to))
	m = MATCHconvert;	// match with conversions
    else
	m = MATCHnomatch;	// no match
    return m;
}

MATCH TypeEnum::constConv(Type *to)
{
    if (equals(to))
	return MATCHexact;
    if (ty == to->ty && sym == ((TypeEnum *)to)->sym &&
	to->mod == MODconst)
	return MATCHconst;
    return MATCHnomatch;
}


Expression *TypeEnum::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeEnum::defaultInit() '%s'\n", toChars());
#endif
    // Initialize to first member of enum
    //printf("%s\n", sym->defaultval->type->toChars());
    if (!sym->defaultval)
    {
	error(loc, "forward reference of %s.init", toChars());
	return new IntegerExp(0, 0, this);
    }
    return sym->defaultval;
}

int TypeEnum::isZeroInit()
{
    return sym->defaultval->isBool(FALSE);
}

int TypeEnum::hasPointers()
{
    return toBasetype()->hasPointers();
}

/***************************** TypeTypedef *****************************/

TypeTypedef::TypeTypedef(TypedefDeclaration *sym)
	: Type(Ttypedef)
{
    this->sym = sym;
}

Type *TypeTypedef::syntaxCopy()
{
    return this;
}

char *TypeTypedef::toChars()
{
    return Type::toChars();
}

Type *TypeTypedef::semantic(Loc loc, Scope *sc)
{
    //printf("TypeTypedef::semantic(%s), sem = %d\n", toChars(), sym->sem);
    sym->semantic(sc);
    return merge();
}

d_uns64 TypeTypedef::size(Loc loc)
{
    return sym->basetype->size(loc);
}

unsigned TypeTypedef::alignsize()
{
    return sym->basetype->alignsize();
}

Dsymbol *TypeTypedef::toDsymbol(Scope *sc)
{
    return sym;
}

Type *TypeTypedef::toHeadMutable()
{
    if (!mod)
	return this;

    Type *tb = toBasetype();
    Type *t = tb->toHeadMutable();
    if (t->equals(tb))
	return this;
    else
	return mutableOf();
}

void TypeTypedef::toDecoBuffer(OutBuffer *buf, int flag)
{
    Type::toDecoBuffer(buf, flag);
    const char *name = sym->mangle();
    buf->printf("%s", name);
}

void TypeTypedef::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    //printf("TypeTypedef::toCBuffer2() '%s'\n", sym->toChars());
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(sym->toChars());
}

Expression *TypeTypedef::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeTypedef::dotExp(e = '%s', ident = '%s') '%s'\n", e->toChars(), ident->toChars(), toChars());
#endif
    if (ident == Id::init)
    {
	return Type::dotExp(sc, e, ident);
    }
    return sym->basetype->dotExp(sc, e, ident);
}

Expression *TypeTypedef::getProperty(Loc loc, Identifier *ident)
{
#if LOGDOTEXP
    printf("TypeTypedef::getProperty(ident = '%s') '%s'\n", ident->toChars(), toChars());
#endif
    if (ident == Id::init)
    {
	return Type::getProperty(loc, ident);
    }
    return sym->basetype->getProperty(loc, ident);
}

int TypeTypedef::isintegral()
{
    //printf("TypeTypedef::isintegral()\n");
    //printf("sym = '%s'\n", sym->toChars());
    //printf("basetype = '%s'\n", sym->basetype->toChars());
    return sym->basetype->isintegral();
}

int TypeTypedef::isfloating()
{
    return sym->basetype->isfloating();
}

int TypeTypedef::isreal()
{
    return sym->basetype->isreal();
}

int TypeTypedef::isimaginary()
{
    return sym->basetype->isimaginary();
}

int TypeTypedef::iscomplex()
{
    return sym->basetype->iscomplex();
}

int TypeTypedef::isunsigned()
{
    return sym->basetype->isunsigned();
}

int TypeTypedef::isscalar()
{
    return sym->basetype->isscalar();
}

int TypeTypedef::isAssignable()
{
    return sym->basetype->isAssignable();
}

int TypeTypedef::checkBoolean()
{
    return sym->basetype->checkBoolean();
}

Type *TypeTypedef::toBasetype()
{
    if (sym->inuse)
    {
	sym->error("circular definition");
	sym->basetype = Type::terror;
	return Type::terror;
    }
    sym->inuse = 1;
    Type *t = sym->basetype->toBasetype();
    sym->inuse = 0;
    if (mod == MODconst && !t->isInvariant())
	t = t->constOf();
    else if (mod == MODinvariant)
	t = t->invariantOf();
    return t;
}

MATCH TypeTypedef::implicitConvTo(Type *to)
{   MATCH m;

    //printf("TypeTypedef::implicitConvTo(to = %s) %s\n", to->toChars(), toChars());
    if (equals(to))
	m = MATCHexact;		// exact match
    else if (sym->basetype->implicitConvTo(to))
	m = MATCHconvert;	// match with conversions
    else if (ty == to->ty && sym == ((TypeTypedef *)to)->sym)
    {
	m = constConv(to);
    }
    else
	m = MATCHnomatch;	// no match
    return m;
}

MATCH TypeTypedef::constConv(Type *to)
{
    if (equals(to))
	return MATCHexact;
    if (ty == to->ty && sym == ((TypeTypedef *)to)->sym)
	return sym->basetype->implicitConvTo(((TypeTypedef *)to)->sym->basetype);
    return MATCHnomatch;
}


Expression *TypeTypedef::defaultInit(Loc loc)
{   Expression *e;
    Type *bt;

#if LOGDEFAULTINIT
    printf("TypeTypedef::defaultInit() '%s'\n", toChars());
#endif
    if (sym->init)
    {
	//sym->init->toExpression()->print();
	return sym->init->toExpression();
    }
    bt = sym->basetype;
    e = bt->defaultInit(loc);
    e->type = this;
    while (bt->ty == Tsarray)
    {	TypeSArray *tsa = (TypeSArray *)bt;
	e->type = tsa->next;
	bt = tsa->next->toBasetype();
    }
    return e;
}

int TypeTypedef::isZeroInit()
{
    if (sym->init)
    {
	if (sym->init->isVoidInitializer())
	    return 1;		// initialize voids to 0
	Expression *e = sym->init->toExpression();
	if (e && e->isBool(FALSE))
	    return 1;
	return 0;		// assume not
    }
    if (sym->inuse)
    {
	sym->error("circular definition");
	sym->basetype = Type::terror;
    }
    sym->inuse = 1;
    int result = sym->basetype->isZeroInit();
    sym->inuse = 0;
    return result;
}

int TypeTypedef::hasPointers()
{
    return toBasetype()->hasPointers();
}

/***************************** TypeStruct *****************************/

TypeStruct::TypeStruct(StructDeclaration *sym)
	: Type(Tstruct)
{
    this->sym = sym;

    // LDC
    this->unaligned = 0;
}

char *TypeStruct::toChars()
{
    //printf("sym.parent: %s, deco = %s\n", sym->parent->toChars(), deco);
    if (mod)
	return Type::toChars();
    TemplateInstance *ti = sym->parent->isTemplateInstance();
    if (ti && ti->toAlias() == sym)
    {
	return ti->toChars();
    }
    return sym->toChars();
}

Type *TypeStruct::syntaxCopy()
{
    return this;
}

Type *TypeStruct::semantic(Loc loc, Scope *sc)
{
    //printf("TypeStruct::semantic('%s')\n", sym->toChars());

    /* Cannot do semantic for sym because scope chain may not
     * be right.
     */
    //sym->semantic(sc);

    return merge();
}

d_uns64 TypeStruct::size(Loc loc)
{
    return sym->size(loc);
}

unsigned TypeStruct::alignsize()
{   unsigned sz;

    sym->size(0);		// give error for forward references
    sz = sym->alignsize;
    if (sz > sym->structalign)
	sz = sym->structalign;
    return sz;
}

Dsymbol *TypeStruct::toDsymbol(Scope *sc)
{
    return sym;
}

void TypeStruct::toDecoBuffer(OutBuffer *buf, int flag)
{
    const char *name = sym->mangle();
    //printf("TypeStruct::toDecoBuffer('%s') = '%s'\n", toChars(), name);
    Type::toDecoBuffer(buf, flag);
    buf->printf("%s", name);
}

void TypeStruct::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    TemplateInstance *ti = sym->parent->isTemplateInstance();
    if (ti && ti->toAlias() == sym)
	buf->writestring(ti->toChars());
    else
	buf->writestring(sym->toChars());
}

Expression *TypeStruct::dotExp(Scope *sc, Expression *e, Identifier *ident)
{   unsigned offset;

    Expression *b;
    VarDeclaration *v;
    Dsymbol *s;
    DotVarExp *de;
    Declaration *d;

#if LOGDOTEXP
    printf("TypeStruct::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
    if (!sym->members)
    {
	error(e->loc, "struct %s is forward referenced", sym->toChars());
	return new IntegerExp(e->loc, 0, Type::tint32);
    }

    /* If e.tupleof
     */
    if (ident == Id::tupleof)
    {
	/* Create a TupleExp out of the fields of the struct e:
	 * (e.field0, e.field1, e.field2, ...)
	 */
	e = e->semantic(sc);	// do this before turning on noaccesscheck
	Expressions *exps = new Expressions;
	exps->reserve(sym->fields.dim);
	for (size_t i = 0; i < sym->fields.dim; i++)
	{   VarDeclaration *v = (VarDeclaration *)sym->fields.data[i];
	    Expression *fe = new DotVarExp(e->loc, e, v);
	    exps->push(fe);
	}
	e = new TupleExp(e->loc, exps);
	sc = sc->push();
	sc->noaccesscheck = 1;
	e = e->semantic(sc);
	sc->pop();
	return e;
    }

    if (e->op == TOKdotexp)
    {	DotExp *de = (DotExp *)e;

	if (de->e1->op == TOKimport)
	{
	    assert(0);	// cannot find a case where this happens; leave
			// assert in until we do
	    ScopeExp *se = (ScopeExp *)de->e1;

	    s = se->sds->search(e->loc, ident, 0);
	    e = de->e1;
	    goto L1;
	}
    }

    s = sym->search(e->loc, ident, 0);
L1:
    if (!s)
    {
	if (ident != Id::__sizeof &&
	    ident != Id::alignof &&
	    ident != Id::init &&
	    ident != Id::mangleof &&
	    ident != Id::stringof &&
	    ident != Id::offsetof)
	{
	    /* Look for overloaded opDot() to see if we should forward request
	     * to it.
	     */
	    Dsymbol *fd = search_function(sym, Id::opDot);
	    if (fd)
	    {   /* Rewrite e.ident as:
		 *	e.opId().ident
		 */
		e = build_overload(e->loc, sc, e, NULL, fd->ident);
		e = new DotIdExp(e->loc, e, ident);
		return e->semantic(sc);
	    }
	}
	return Type::dotExp(sc, e, ident);
    }
    if (!s->isFuncDeclaration())	// because of overloading
	s->checkDeprecated(e->loc, sc);
    s = s->toAlias();

    v = s->isVarDeclaration();
    if (v && !v->isDataseg())
    {
	Expression *ei = v->getConstInitializer();
	if (ei)
	{   e = ei->copy();	// need to copy it if it's a StringExp
	    e = e->semantic(sc);
	    return e;
	}
    }

    if (s->getType())
    {
	//return new DotTypeExp(e->loc, e, s);
	return new TypeExp(e->loc, s->getType());
    }

    EnumMember *em = s->isEnumMember();
    if (em)
    {
	assert(em->value);
	return em->value->copy();
    }

    TemplateMixin *tm = s->isTemplateMixin();
    if (tm)
    {
	Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, tm));
	de->type = e->type;
	return de;
    }

    TemplateDeclaration *td = s->isTemplateDeclaration();
    if (td)
    {
        e = new DotTemplateExp(e->loc, e, td);
        e->semantic(sc);
	return e;
    }

    TemplateInstance *ti = s->isTemplateInstance();
    if (ti)
    {	if (!ti->semanticdone)
	    ti->semantic(sc);
	s = ti->inst->toAlias();
	if (!s->isTemplateInstance())
	    goto L1;
	Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, ti));
	de->type = e->type;
	return de;
    }

    d = s->isDeclaration();
#ifdef DEBUG
    if (!d)
	printf("d = %s '%s'\n", s->kind(), s->toChars());
#endif
    assert(d);

    if (e->op == TOKtype)
    {	FuncDeclaration *fd = sc->func;

	if (d->needThis() && fd && fd->vthis)
	{
	    e = new DotVarExp(e->loc, new ThisExp(e->loc), d);
	    e = e->semantic(sc);
	    return e;
	}
	if (d->isTupleDeclaration())
	{
	    e = new TupleExp(e->loc, d->isTupleDeclaration());
	    e = e->semantic(sc);
	    return e;
	}
	return new VarExp(e->loc, d, 1);
    }

    if (d->isDataseg())
    {
	// (e, d)
	VarExp *ve;

	accessCheck(e->loc, sc, e, d);
	ve = new VarExp(e->loc, d);
	e = new CommaExp(e->loc, e, ve);
	e->type = d->type;
	return e;
    }

    if (v)
    {
	if (v->toParent() != sym)
	    sym->error(e->loc, "'%s' is not a member", v->toChars());

	// *(&e + offset)
	accessCheck(e->loc, sc, e, d);

// LDC we don't want dot exprs turned into pointer arithmetic. it complicates things for no apparent gain
#ifndef IN_LLVM
	b = new AddrExp(e->loc, e);
	b->type = e->type->pointerTo();
	b = new AddExp(e->loc, b, new IntegerExp(e->loc, v->offset, Type::tint32));
	b->type = v->type->pointerTo();
	b = new PtrExp(e->loc, b);
	b->type = v->type;
	if (e->type->isConst())
	    b->type = b->type->constOf();
	else if (e->type->isInvariant())
	    b->type = b->type->invariantOf();
	return b;
#endif
    }

    de = new DotVarExp(e->loc, e, d);
    return de->semantic(sc);
}

unsigned TypeStruct::memalign(unsigned salign)
{
    sym->size(0);		// give error for forward references
    return sym->structalign;
}

Expression *TypeStruct::defaultInit(Loc loc)
{   Declaration *d;

#if LOGDEFAULTINIT
    printf("TypeStruct::defaultInit() '%s'\n", toChars());
#endif
    d = new StaticStructInitDeclaration(sym->loc, sym);
    assert(d);
    d->type = this;
    return new VarExp(sym->loc, d);
}

int TypeStruct::isZeroInit()
{
    return sym->zeroInit;
}

int TypeStruct::checkBoolean()
{
    return FALSE;
}

int TypeStruct::isAssignable()
{
    /* If any of the fields are const or invariant,
     * then one cannot assign this struct.
     */
    for (size_t i = 0; i < sym->fields.dim; i++)
    {   VarDeclaration *v = (VarDeclaration *)sym->fields.data[i];
	if (v->isConst() || v->isInvariant())
	    return FALSE;
    }
    return TRUE;
}

int TypeStruct::hasPointers()
{
    StructDeclaration *s = sym;

    sym->size(0);		// give error for forward references
    for (size_t i = 0; i < s->fields.dim; i++)
    {
	Dsymbol *sm = (Dsymbol *)s->fields.data[i];
	if (sm->hasPointers())
	    return TRUE;
    }
    return FALSE;
}

MATCH TypeStruct::implicitConvTo(Type *to)
{   MATCH m;

    //printf("TypeStruct::implicitConvTo(%s => %s)\n", toChars(), to->toChars());
    if (ty == to->ty && sym == ((TypeStruct *)to)->sym)
    {	m = MATCHexact;		// exact match
	if (mod != to->mod)
	{
	    if (to->mod == MODconst)
		m = MATCHconst;
	    else
	    {	/* Check all the fields. If they can all be converted,
		 * allow the conversion.
		 */
		for (int i = 0; i < sym->fields.dim; i++)
		{   Dsymbol *s = (Dsymbol *)sym->fields.data[i];
		    VarDeclaration *v = s->isVarDeclaration();
		    assert(v && v->storage_class & STCfield);

		    // 'from' type
		    Type *tvf = v->type;
		    if (mod == MODconst)
			tvf = tvf->constOf();
		    else if (mod == MODinvariant)
			tvf = tvf->invariantOf();

		    // 'to' type
		    Type *tv = v->type;
		    if (to->mod == 0)
			tv = tv->mutableOf();
		    else
		    {	assert(to->mod == MODinvariant);
			tv = tv->invariantOf();
		    }

		    //printf("\t%s => %s, match = %d\n", v->type->toChars(), tv->toChars(), tvf->implicitConvTo(tv));
		    if (tvf->implicitConvTo(tv) < MATCHconst)
			return MATCHnomatch;
		}
		m = MATCHconst;
	    }
	}
    }
    else
	m = MATCHnomatch;	// no match
    return m;
}

Type *TypeStruct::toHeadMutable()
{
    return this;
}

MATCH TypeStruct::constConv(Type *to)
{
    if (equals(to))
	return MATCHexact;
    if (ty == to->ty && sym == ((TypeStruct *)to)->sym &&
	to->mod == MODconst)
	return MATCHconst;
    return MATCHnomatch;
}


/***************************** TypeClass *****************************/

TypeClass::TypeClass(ClassDeclaration *sym)
	: Type(Tclass)
{
    this->sym = sym;
}

char *TypeClass::toChars()
{
    if (mod)
	return Type::toChars();
    return sym->toPrettyChars();
}

Type *TypeClass::syntaxCopy()
{
    return this;
}

Type *TypeClass::semantic(Loc loc, Scope *sc)
{
    //printf("TypeClass::semantic(%s)\n", sym->toChars());
    if (sym->scope)
	sym->semantic(sym->scope);
    return merge();
}

d_uns64 TypeClass::size(Loc loc)
{
    return PTRSIZE;
}

Dsymbol *TypeClass::toDsymbol(Scope *sc)
{
    return sym;
}

void TypeClass::toDecoBuffer(OutBuffer *buf, int flag)
{
    const char *name = sym->mangle();
    //printf("TypeClass::toDecoBuffer('%s' flag=%d mod=%x) = '%s'\n", toChars(), flag, mod, name);
    Type::toDecoBuffer(buf, flag);
    buf->printf("%s", name);
}

void TypeClass::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    buf->writestring(sym->toChars());
}

Expression *TypeClass::dotExp(Scope *sc, Expression *e, Identifier *ident)
{   unsigned offset;

    Expression *b;
    VarDeclaration *v;
    Dsymbol *s;

#if LOGDOTEXP
    printf("TypeClass::dotExp(e='%s', ident='%s')\n", e->toChars(), ident->toChars());
#endif

    if (e->op == TOKdotexp)
    {	DotExp *de = (DotExp *)e;

	if (de->e1->op == TOKimport)
	{
	    ScopeExp *se = (ScopeExp *)de->e1;

	    s = se->sds->search(e->loc, ident, 0);
	    e = de->e1;
	    goto L1;
	}
    }

    if (ident == Id::tupleof)
    {
	/* Create a TupleExp
	 */
	e = e->semantic(sc);	// do this before turning on noaccesscheck
	Expressions *exps = new Expressions;
	exps->reserve(sym->fields.dim);
	for (size_t i = 0; i < sym->fields.dim; i++)
	{   VarDeclaration *v = (VarDeclaration *)sym->fields.data[i];
	    Expression *fe = new DotVarExp(e->loc, e, v);
	    exps->push(fe);
	}
	e = new TupleExp(e->loc, exps);
	sc = sc->push();
	sc->noaccesscheck = 1;
	e = e->semantic(sc);
	sc->pop();
	return e;
    }

    s = sym->search(e->loc, ident, 0);
L1:
    if (!s)
    {
	// See if it's a base class
	ClassDeclaration *cbase;
	for (cbase = sym->baseClass; cbase; cbase = cbase->baseClass)
	{
	    if (cbase->ident->equals(ident))
	    {
		e = new DotTypeExp(0, e, cbase);
		return e;
	    }
	}

	if (ident == Id::classinfo)
	{
	    assert(ClassDeclaration::classinfo);
	    Type *t = ClassDeclaration::classinfo->type;
	    if (e->op == TOKtype || e->op == TOKdottype)
	    {
		/* For type.classinfo, we know the classinfo
		 * at compile time.
		 */
		if (!sym->vclassinfo)
		    sym->vclassinfo = new ClassInfoDeclaration(sym);
		e = new VarExp(e->loc, sym->vclassinfo);
		e = e->addressOf(sc);
		e->type = t;	// do this so we don't get redundant dereference
	    }
	    else
	    {
        /* For class objects, the classinfo reference is the first
         * entry in the vtbl[]
         */
#if IN_LLVM

        Type* ct;
        if (sym->isInterfaceDeclaration()) {
            ct = t->pointerTo()->pointerTo()->pointerTo();
        }
        else {
            ct = t->pointerTo()->pointerTo();
        }

        e = e->castTo(sc, ct);
        e = new PtrExp(e->loc, e);
        e->type = ct->nextOf();
        e = new PtrExp(e->loc, e);
        e->type = ct->nextOf()->nextOf();

        if (sym->isInterfaceDeclaration())
        {
            if (sym->isCOMinterface())
            {   /* COM interface vtbl[]s are different in that the
             * first entry is always pointer to QueryInterface().
             * We can't get a .classinfo for it.
             */
            error(e->loc, "no .classinfo for COM interface objects");
            }
            /* For an interface, the first entry in the vtbl[]
             * is actually a pointer to an instance of struct Interface.
             * The first member of Interface is the .classinfo,
             * so add an extra pointer indirection.
             */
            e = new PtrExp(e->loc, e);
            e->type = ct->nextOf()->nextOf()->nextOf();
        }
        }

#else

		e = new PtrExp(e->loc, e);
		e->type = t->pointerTo();
		if (sym->isInterfaceDeclaration())
		{
		    if (sym->isCPPinterface())
		    {	/* C++ interface vtbl[]s are different in that the
			 * first entry is always pointer to the first virtual
			 * function, not classinfo.
			 * We can't get a .classinfo for it.
			 */
			error(e->loc, "no .classinfo for C++ interface objects");
		    }
		    /* For an interface, the first entry in the vtbl[]
		     * is actually a pointer to an instance of struct Interface.
		     * The first member of Interface is the .classinfo,
		     * so add an extra pointer indirection.
		     */
		    e->type = e->type->pointerTo();
		    e = new PtrExp(e->loc, e);
		    e->type = t->pointerTo();
		}
		e = new PtrExp(e->loc, e, t);
        }

#endif // !LDC

	    return e;
	}

	if (ident == Id::__vptr)
	{   /* The pointer to the vtbl[]
	     * *cast(invariant(void*)**)e
	     */
	    e = e->castTo(sc, tvoidptr->invariantOf()->pointerTo()->pointerTo());
	    e = new PtrExp(e->loc, e);
	    e = e->semantic(sc);
	    return e;
	}

	if (ident == Id::__monitor)
	{   /* The handle to the monitor (call it a void*)
	     * *(cast(void**)e + 1)
	     */
	    e = e->castTo(sc, tvoidptr->pointerTo());
	    e = new AddExp(e->loc, e, new IntegerExp(1));
	    e = new PtrExp(e->loc, e);
	    e = e->semantic(sc);
	    return e;
	}

	if (ident == Id::typeinfo)
	{
	    if (!global.params.useDeprecated)
		error(e->loc, ".typeinfo deprecated, use typeid(type)");
	    return getTypeInfo(sc);
	}
	if (ident == Id::outer && sym->vthis)
	{
	    s = sym->vthis;
	}
	else
	{

	    if (ident != Id::__sizeof &&
		ident != Id::alignof &&
		ident != Id::init &&
		ident != Id::mangleof &&
		ident != Id::stringof &&
		ident != Id::offsetof)
	    {
		/* Look for overloaded opDot() to see if we should forward request
		 * to it.
		 */
		Dsymbol *fd = search_function(sym, Id::opDot);
		if (fd)
		{   /* Rewrite e.ident as:
		     *	e.opId().ident
		     */
		    e = build_overload(e->loc, sc, e, NULL, fd->ident);
		    e = new DotIdExp(e->loc, e, ident);
		    return e->semantic(sc);
		}
	    }

	    return Type::dotExp(sc, e, ident);
	}
    }
    if (!s->isFuncDeclaration())	// because of overloading
	s->checkDeprecated(e->loc, sc);
    s = s->toAlias();
    v = s->isVarDeclaration();
    if (v && !v->isDataseg())
    {	Expression *ei = v->getConstInitializer();

	if (ei)
	{   e = ei->copy();	// need to copy it if it's a StringExp
	    e = e->semantic(sc);
	    return e;
	}
    }

    if (s->getType())
    {
//	if (e->op == TOKtype)
	    return new TypeExp(e->loc, s->getType());
//	return new DotTypeExp(e->loc, e, s);
    }

    EnumMember *em = s->isEnumMember();
    if (em)
    {
	assert(em->value);
	return em->value->copy();
    }

    TemplateMixin *tm = s->isTemplateMixin();
    if (tm)
    {
	Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, tm));
	de->type = e->type;
	return de;
    }

    TemplateDeclaration *td = s->isTemplateDeclaration();
    if (td)
    {
        e = new DotTemplateExp(e->loc, e, td);
        e->semantic(sc);
	return e;
    }

    TemplateInstance *ti = s->isTemplateInstance();
    if (ti)
    {	if (!ti->semanticdone)
	    ti->semantic(sc);
	s = ti->inst->toAlias();
	if (!s->isTemplateInstance())
	    goto L1;
	Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, ti));
	de->type = e->type;
	return de;
    }

    Declaration *d = s->isDeclaration();
    if (!d)
    {
	e->error("%s.%s is not a declaration", e->toChars(), ident->toChars());
	return new IntegerExp(e->loc, 1, Type::tint32);
    }

    if (e->op == TOKtype)
    {
	/* It's:
	 *    Class.d
	 */
	if (d->needThis() && (hasThis(sc) || !d->isFuncDeclaration()))
	{
	    if (sc->func)
	    {
		ClassDeclaration *thiscd;
		thiscd = sc->func->toParent()->isClassDeclaration();

		if (thiscd)
		{
		    ClassDeclaration *cd = e->type->isClassHandle();

		    if (cd == thiscd)
		    {
			e = new ThisExp(e->loc);
			e = new DotTypeExp(e->loc, e, cd);
			DotVarExp *de = new DotVarExp(e->loc, e, d);
			e = de->semantic(sc);
			return e;
		    }
		    else if ((!cd || !cd->isBaseOf(thiscd, NULL)) &&
			     !d->isFuncDeclaration())
			e->error("'this' is required, but %s is not a base class of %s", e->type->toChars(), thiscd->toChars());
		}
	    }

	    /* Rewrite as:
	     *	this.d
	     */
	    DotVarExp *de = new DotVarExp(e->loc, new ThisExp(e->loc), d);
	    e = de->semantic(sc);
	    return e;
	}
	else if (d->isTupleDeclaration())
	{
	    e = new TupleExp(e->loc, d->isTupleDeclaration());
	    e = e->semantic(sc);
	    return e;
	}
	else
	{
	    VarExp *ve = new VarExp(e->loc, d, 1);
	    return ve;
	}
    }

    if (d->isDataseg())
    {
	// (e, d)
	VarExp *ve;

	accessCheck(e->loc, sc, e, d);
	ve = new VarExp(e->loc, d);
	e = new CommaExp(e->loc, e, ve);
	e->type = d->type;
	return e;
    }

    if (d->parent && d->toParent()->isModule())
    {
	// (e, d)

	VarExp *ve = new VarExp(e->loc, d, 1);
	e = new CommaExp(e->loc, e, ve);
	e->type = d->type;
	return e;
    }

    DotVarExp *de = new DotVarExp(e->loc, e, d);
    return de->semantic(sc);
}

ClassDeclaration *TypeClass::isClassHandle()
{
    return sym;
}

int TypeClass::isauto()
{
    return sym->isauto;
}

int TypeClass::isBaseOf(Type *t, int *poffset)
{
    if (t->ty == Tclass)
    {   ClassDeclaration *cd;

	cd   = ((TypeClass *)t)->sym;
	if (sym->isBaseOf(cd, poffset))
	    return 1;
    }
    return 0;
}

MATCH TypeClass::implicitConvTo(Type *to)
{
    //printf("TypeClass::implicitConvTo(to = '%s') %s\n", to->toChars(), toChars());
    MATCH m = constConv(to);
    if (m != MATCHnomatch)
	return m;

    ClassDeclaration *cdto = to->isClassHandle();
    if (cdto && cdto->isBaseOf(sym, NULL))
    {	//printf("'to' is base\n");
	return MATCHconvert;
    }

    if (global.params.Dversion == 1)
    {
	// Allow conversion to (void *)
	if (to->ty == Tpointer && ((TypePointer *)to)->next->ty == Tvoid)
	    return MATCHconvert;
    }

    return MATCHnomatch;
}

MATCH TypeClass::constConv(Type *to)
{
    if (equals(to))
	return MATCHexact;
    if (ty == to->ty && sym == ((TypeClass *)to)->sym &&
	to->mod == MODconst)
	return MATCHconst;
    return MATCHnomatch;
}

Type *TypeClass::toHeadMutable()
{
    return this;
}

Expression *TypeClass::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
    printf("TypeClass::defaultInit() '%s'\n", toChars());
#endif
    Expression *e;
    e = new NullExp(loc);
    e->type = this;
    return e;
}

int TypeClass::isZeroInit()
{
    return 1;
}

int TypeClass::checkBoolean()
{
    return TRUE;
}

int TypeClass::hasPointers()
{
    return TRUE;
}

/***************************** TypeTuple *****************************/

TypeTuple::TypeTuple(Arguments *arguments)
    : Type(Ttuple)
{
    //printf("TypeTuple(this = %p)\n", this);
    this->arguments = arguments;
    //printf("TypeTuple() %s\n", toChars());
#ifdef DEBUG
    if (arguments)
    {
	for (size_t i = 0; i < arguments->dim; i++)
	{
	    Argument *arg = (Argument *)arguments->data[i];
	    assert(arg && arg->type);
	}
    }
#endif
}

/****************
 * Form TypeTuple from the types of the expressions.
 * Assume exps[] is already tuple expanded.
 */

TypeTuple::TypeTuple(Expressions *exps)
    : Type(Ttuple)
{
    Arguments *arguments = new Arguments;
    if (exps)
    {
	arguments->setDim(exps->dim);
	for (size_t i = 0; i < exps->dim; i++)
	{   Expression *e = (Expression *)exps->data[i];
	    if (e->type->ty == Ttuple)
		e->error("cannot form tuple of tuples");
	    Argument *arg = new Argument(STCundefined, e->type, NULL, NULL);
	    arguments->data[i] = (void *)arg;
	}
    }
    this->arguments = arguments;
}

Type *TypeTuple::syntaxCopy()
{
    Arguments *args = Argument::arraySyntaxCopy(arguments);
    Type *t = new TypeTuple(args);
    t->mod = mod;
    return t;
}

Type *TypeTuple::semantic(Loc loc, Scope *sc)
{
    //printf("TypeTuple::semantic(this = %p)\n", this);
    //printf("TypeTuple::semantic() %s\n", toChars());
    if (!deco)
	deco = merge()->deco;

    /* Don't return merge(), because a tuple with one type has the
     * same deco as that type.
     */
    return this;
}

int TypeTuple::equals(Object *o)
{   Type *t;

    t = (Type *)o;
    //printf("TypeTuple::equals(%s, %s)\n", toChars(), t->toChars());
    if (this == t)
    {
	return 1;
    }
    if (t->ty == Ttuple)
    {	TypeTuple *tt = (TypeTuple *)t;

	if (arguments->dim == tt->arguments->dim)
	{
	    for (size_t i = 0; i < tt->arguments->dim; i++)
	    {   Argument *arg1 = (Argument *)arguments->data[i];
		Argument *arg2 = (Argument *)tt->arguments->data[i];

		if (!arg1->type->equals(arg2->type))
		    return 0;
	    }
	    return 1;
	}
    }
    return 0;
}

Type *TypeTuple::reliesOnTident()
{
    if (arguments)
    {
	for (size_t i = 0; i < arguments->dim; i++)
	{
	    Argument *arg = (Argument *)arguments->data[i];
	    Type *t = arg->type->reliesOnTident();
	    if (t)
		return t;
	}
    }
    return NULL;
}

#if 0
Type *TypeTuple::makeConst()
{
    //printf("TypeTuple::makeConst() %s\n", toChars());
    if (cto)
	return cto;
    TypeTuple *t = (TypeTuple *)Type::makeConst();
    t->arguments = new Arguments();
    t->arguments->setDim(arguments->dim);
    for (size_t i = 0; i < arguments->dim; i++)
    {   Argument *arg = (Argument *)arguments->data[i];
	Argument *narg = new Argument(arg->storageClass, arg->type->constOf(), arg->ident, arg->defaultArg);
	t->arguments->data[i] = (Argument *)narg;
    }
    return t;
}
#endif

void TypeTuple::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    Argument::argsToCBuffer(buf, hgs, arguments, 0);
}

void TypeTuple::toDecoBuffer(OutBuffer *buf, int flag)
{
    //printf("TypeTuple::toDecoBuffer() this = %p, %s\n", this, toChars());
    Type::toDecoBuffer(buf, flag);
    OutBuffer buf2;
    Argument::argsToDecoBuffer(&buf2, arguments);
    unsigned len = buf2.offset;
    buf->printf("%d%.*s", len, len, (char *)buf2.extractData());
}

Expression *TypeTuple::getProperty(Loc loc, Identifier *ident)
{   Expression *e;

#if LOGDOTEXP
    printf("TypeTuple::getProperty(type = '%s', ident = '%s')\n", toChars(), ident->toChars());
#endif
    if (ident == Id::length)
    {
	e = new IntegerExp(loc, arguments->dim, Type::tsize_t);
    }
    else
    {
	error(loc, "no property '%s' for tuple '%s'", ident->toChars(), toChars());
	e = new IntegerExp(loc, 1, Type::tint32);
    }
    return e;
}

/***************************** TypeSlice *****************************/

/* This is so we can slice a TypeTuple */

TypeSlice::TypeSlice(Type *next, Expression *lwr, Expression *upr)
    : TypeNext(Tslice, next)
{
    //printf("TypeSlice[%s .. %s]\n", lwr->toChars(), upr->toChars());
    this->lwr = lwr;
    this->upr = upr;
}

Type *TypeSlice::syntaxCopy()
{
    Type *t = new TypeSlice(next->syntaxCopy(), lwr->syntaxCopy(), upr->syntaxCopy());
    t->mod = mod;
    return t;
}

Type *TypeSlice::semantic(Loc loc, Scope *sc)
{
    //printf("TypeSlice::semantic() %s\n", toChars());
    next = next->semantic(loc, sc);
    if (mod == MODconst && !next->isInvariant())
	next = next->constOf();
    else if (mod == MODinvariant)
	next = next->invariantOf();
    //printf("next: %s\n", next->toChars());

    Type *tbn = next->toBasetype();
    if (tbn->ty != Ttuple)
    {	error(loc, "can only slice tuple types, not %s", tbn->toChars());
	return Type::terror;
    }
    TypeTuple *tt = (TypeTuple *)tbn;

    lwr = semanticLength(sc, tbn, lwr);
    lwr = lwr->optimize(WANTvalue);
    uinteger_t i1 = lwr->toUInteger();

    upr = semanticLength(sc, tbn, upr);
    upr = upr->optimize(WANTvalue);
    uinteger_t i2 = upr->toUInteger();

    if (!(i1 <= i2 && i2 <= tt->arguments->dim))
    {	error(loc, "slice [%llu..%llu] is out of range of [0..%u]", i1, i2, tt->arguments->dim);
	return Type::terror;
    }

    Arguments *args = new Arguments;
    args->reserve(i2 - i1);
    for (size_t i = i1; i < i2; i++)
    {	Argument *arg = (Argument *)tt->arguments->data[i];
	args->push(arg);
    }

    return new TypeTuple(args);
}

void TypeSlice::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
    next->resolve(loc, sc, pe, pt, ps);
    if (*pe)
    {	// It's really a slice expression
	Expression *e;
	e = new SliceExp(loc, *pe, lwr, upr);
	*pe = e;
    }
    else if (*ps)
    {	Dsymbol *s = *ps;
	TupleDeclaration *td = s->isTupleDeclaration();
	if (td)
	{
	    /* It's a slice of a TupleDeclaration
	     */
	    ScopeDsymbol *sym = new ArrayScopeSymbol(sc, td);
	    sym->parent = sc->scopesym;
	    sc = sc->push(sym);

	    lwr = lwr->semantic(sc);
	    lwr = lwr->optimize(WANTvalue);
	    uinteger_t i1 = lwr->toUInteger();

	    upr = upr->semantic(sc);
	    upr = upr->optimize(WANTvalue);
	    uinteger_t i2 = upr->toUInteger();

	    sc = sc->pop();

	    if (!(i1 <= i2 && i2 <= td->objects->dim))
	    {   error(loc, "slice [%llu..%llu] is out of range of [0..%u]", i1, i2, td->objects->dim);
		goto Ldefault;
	    }

	    if (i1 == 0 && i2 == td->objects->dim)
	    {
		*ps = td;
		return;
	    }

	    /* Create a new TupleDeclaration which
	     * is a slice [i1..i2] out of the old one.
	     */
	    Objects *objects = new Objects;
	    objects->setDim(i2 - i1);
	    for (size_t i = 0; i < objects->dim; i++)
	    {
		objects->data[i] = td->objects->data[(size_t)i1 + i];
	    }

	    TupleDeclaration *tds = new TupleDeclaration(loc, td->ident, objects);
	    *ps = tds;
	}
	else
	    goto Ldefault;
    }
    else
    {
     Ldefault:
	Type::resolve(loc, sc, pe, pt, ps);
    }
}

void TypeSlice::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
    if (mod != this->mod)
    {	toCBuffer3(buf, hgs, mod);
	return;
    }
    next->toCBuffer2(buf, hgs, this->mod);

    buf->printf("[%s .. ", lwr->toChars());
    buf->printf("%s]", upr->toChars());
}

/***************************** Argument *****************************/

Argument::Argument(unsigned storageClass, Type *type, Identifier *ident, Expression *defaultArg)
{
    this->type = type;
    this->ident = ident;
    this->storageClass = storageClass;
    this->defaultArg = defaultArg;
}

Argument *Argument::syntaxCopy()
{
    Argument *a = new Argument(storageClass,
		type ? type->syntaxCopy() : NULL,
		ident,
		defaultArg ? defaultArg->syntaxCopy() : NULL);
    return a;
}

Arguments *Argument::arraySyntaxCopy(Arguments *args)
{   Arguments *a = NULL;

    if (args)
    {
	a = new Arguments();
	a->setDim(args->dim);
	for (size_t i = 0; i < a->dim; i++)
	{   Argument *arg = (Argument *)args->data[i];

	    arg = arg->syntaxCopy();
	    a->data[i] = (void *)arg;
	}
    }
    return a;
}

char *Argument::argsTypesToChars(Arguments *args, int varargs)
{
    OutBuffer *buf = new OutBuffer();

#if 1
    HdrGenState hgs;
    argsToCBuffer(buf, &hgs, args, varargs);
#else
    buf->writeByte('(');
    if (args)
    {	OutBuffer argbuf;
	HdrGenState hgs;

	for (int i = 0; i < args->dim; i++)
	{   if (i)
		buf->writeByte(',');
	    Argument *arg = (Argument *)args->data[i];
	    argbuf.reset();
	    arg->type->toCBuffer2(&argbuf, &hgs, 0);
	    buf->write(&argbuf);
	}
	if (varargs)
	{
	    if (i && varargs == 1)
		buf->writeByte(',');
	    buf->writestring("...");
	}
    }
    buf->writeByte(')');
#endif
    return buf->toChars();
}

void Argument::argsToCBuffer(OutBuffer *buf, HdrGenState *hgs, Arguments *arguments, int varargs)
{
    buf->writeByte('(');
    if (arguments)
    {	int i;
	OutBuffer argbuf;

	for (i = 0; i < arguments->dim; i++)
	{
	    if (i)
		buf->writestring(", ");
	    Argument *arg = (Argument *)arguments->data[i];

	    if (arg->storageClass & STCout)
		buf->writestring("out ");
	    else if (arg->storageClass & STCref)
		buf->writestring((global.params.Dversion == 1)
			? (char *)"inout " : (char *)"ref ");
	    else if (arg->storageClass & STCin)
		buf->writestring("in ");
	    else if (arg->storageClass & STClazy)
		buf->writestring("lazy ");
	    else if (arg->storageClass & STCalias)
		buf->writestring("alias ");
	    else if (arg->storageClass & STCauto)
		buf->writestring("auto ");

	    if (arg->storageClass & STCscope)
		buf->writestring("scope ");

	    if (arg->storageClass & STCconst)
		buf->writestring("const ");
	    if (arg->storageClass & STCinvariant)
		buf->writestring("invariant ");
	    if (arg->storageClass & STCshared)
		buf->writestring("shared ");

	    argbuf.reset();
	    if (arg->storageClass & STCalias)
	    {	if (arg->ident)
		    argbuf.writestring(arg->ident->toChars());
	    }
	    else
		arg->type->toCBuffer(&argbuf, arg->ident, hgs);
	    if (arg->defaultArg)
	    {
		argbuf.writestring(" = ");
		arg->defaultArg->toCBuffer(&argbuf, hgs);
	    }
	    buf->write(&argbuf);
	}
	if (varargs)
	{
	    if (i && varargs == 1)
		buf->writeByte(',');
	    buf->writestring("...");
	}
    }
    buf->writeByte(')');
}


void Argument::argsToDecoBuffer(OutBuffer *buf, Arguments *arguments)
{
    //printf("Argument::argsToDecoBuffer()\n");

    // Write argument types
    if (arguments)
    {
	size_t dim = Argument::dim(arguments);
	for (size_t i = 0; i < dim; i++)
	{
	    Argument *arg = Argument::getNth(arguments, i);
	    arg->toDecoBuffer(buf);
	}
    }
}


/****************************************
 * Determine if parameter list is really a template parameter list
 * (i.e. it has auto or alias parameters)
 */

int Argument::isTPL(Arguments *arguments)
{
    //printf("Argument::isTPL()\n");

    if (arguments)
    {
	size_t dim = Argument::dim(arguments);
	for (size_t i = 0; i < dim; i++)
	{
	    Argument *arg = Argument::getNth(arguments, i);
	    if (arg->storageClass & (STCalias | STCauto | STCstatic))
		return 1;
	}
    }
    return 0;
}

/****************************************************
 * Determine if parameter is a lazy array of delegates.
 * If so, return the return type of those delegates.
 * If not, return NULL.
 */

Type *Argument::isLazyArray()
{
//    if (inout == Lazy)
    {
	Type *tb = type->toBasetype();
	if (tb->ty == Tsarray || tb->ty == Tarray)
	{
	    Type *tel = ((TypeArray *)tb)->next->toBasetype();
	    if (tel->ty == Tdelegate)
	    {
		TypeDelegate *td = (TypeDelegate *)tel;
		TypeFunction *tf = (TypeFunction *)td->next;

		if (!tf->varargs && Argument::dim(tf->parameters) == 0)
		{
		    return tf->next;	// return type of delegate
		}
	    }
	}
    }
    return NULL;
}

void Argument::toDecoBuffer(OutBuffer *buf)
{
    if (storageClass & STCscope)
	buf->writeByte('M');
    switch (storageClass & (STCin | STCout | STCref | STClazy))
    {   case 0:
	case STCin:
	    break;
	case STCout:
	    buf->writeByte('J');
	    break;
	case STCref:
	    buf->writeByte('K');
	    break;
	case STClazy:
	    buf->writeByte('L');
	    break;
	default:
#ifdef DEBUG
	    halt();
#endif
	    assert(0);
    }
#if 0
    int mod = 0x100;
    if (type->toBasetype()->ty == Tclass)
	mod = 0;
    type->toDecoBuffer(buf, mod);
#else
    //type->toHeadMutable()->toDecoBuffer(buf, 0);
    type->toDecoBuffer(buf, 0);
#endif
}

/***************************************
 * Determine number of arguments, folding in tuples.
 */

size_t Argument::dim(Arguments *args)
{
    size_t n = 0;
    if (args)
    {
	for (size_t i = 0; i < args->dim; i++)
	{   Argument *arg = (Argument *)args->data[i];
	    Type *t = arg->type->toBasetype();

	    if (t->ty == Ttuple)
	    {   TypeTuple *tu = (TypeTuple *)t;
		n += dim(tu->arguments);
	    }
	    else
		n++;
	}
    }
    return n;
}

/***************************************
 * Get nth Argument, folding in tuples.
 * Returns:
 *	Argument*	nth Argument
 *	NULL		not found, *pn gets incremented by the number
 *			of Arguments
 */

Argument *Argument::getNth(Arguments *args, size_t nth, size_t *pn)
{
    if (!args)
	return NULL;

    size_t n = 0;
    for (size_t i = 0; i < args->dim; i++)
    {   Argument *arg = (Argument *)args->data[i];
	Type *t = arg->type->toBasetype();

	if (t->ty == Ttuple)
	{   TypeTuple *tu = (TypeTuple *)t;
	    arg = getNth(tu->arguments, nth - n, &n);
	    if (arg)
		return arg;
	}
	else if (n == nth)
	    return arg;
	else
	    n++;
    }

    if (pn)
	*pn += n;
    return NULL;
}