view dmd/arrayop.c @ 650:aa6a0b7968f7

Added test case for bug #100 Removed dubious check for not emitting static private global in other modules without access. This should be handled properly somewhere else, it's causing unresolved global errors for stuff that should work (in MiniD)
author Tomas Lindquist Olsen <tomas.l.olsen@gmail.com>
date Sun, 05 Oct 2008 17:28:15 +0200
parents 6aee82889553
children eef8ac26c66c
line wrap: on
line source


// Copyright (c) 1999-2008 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.

#include <stdio.h>
#include <string.h>
#include <assert.h>

#if _WIN32 || IN_GCC  || IN_LLVM
#include "mem.h"
#else
#include "../root/mem.h"
#endif

#include "stringtable.h"

#include "expression.h"
#include "statement.h"
#include "mtype.h"
#include "declaration.h"
#include "scope.h"
#include "id.h"
#include "module.h"
#include "init.h"

// FIXME
int binary(const char *p , const char **tab, int high)
{
    assert(0);
}

/**************************************
 * Hash table of array op functions already generated or known about.
 */

StringTable arrayfuncs;

/***********************************
 * Construct the array operation expression.
 */

Expression *BinExp::arrayOp(Scope *sc)
{
    // FIXME
    error("array operations not yet implemented");
    fatal();

    Expressions *arguments = new Expressions();

    /* The expression to generate an array operation for is mangled
     * into a name to use as the array operation function name.
     * Mangle in the operands and operators in RPN order, and type.
     */
    OutBuffer buf;
    buf.writestring("_array");
    buildArrayIdent(&buf, arguments);
    buf.writeByte('_');

    /* Append deco of array element type
     */
#if DMDV2
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->mutableOf()->deco);
#else
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->deco);
#endif

    size_t namelen = buf.offset;
    buf.writeByte(0);
    char *name = (char *)buf.extractData();

    /* Look up name in hash table
     */
    StringValue *sv = arrayfuncs.update(name, namelen);
    FuncDeclaration *fd = (FuncDeclaration *)sv->ptrvalue;
    if (!fd)
    {
	/* Some of the array op functions are written as library functions,
	 * presumably to optimize them with special CPU vector instructions.
	 * List those library functions here, in alpha order.
	 */
	static const char *libArrayopFuncs[] =
	{
	    "_arrayExpSliceAddass_a",
	    "_arrayExpSliceAddass_d",		// T[]+=T
	    "_arrayExpSliceAddass_f",		// T[]+=T
	    "_arrayExpSliceAddass_g",
	    "_arrayExpSliceAddass_h",
	    "_arrayExpSliceAddass_i",
	    "_arrayExpSliceAddass_k",
	    "_arrayExpSliceAddass_s",
	    "_arrayExpSliceAddass_t",
	    "_arrayExpSliceAddass_u",
	    "_arrayExpSliceAddass_w",

	    "_arrayExpSliceDivass_d",		// T[]/=T
	    "_arrayExpSliceDivass_f",		// T[]/=T

	    "_arrayExpSliceMinSliceAssign_a",
	    "_arrayExpSliceMinSliceAssign_d",	// T[]=T-T[]
	    "_arrayExpSliceMinSliceAssign_f",	// T[]=T-T[]
	    "_arrayExpSliceMinSliceAssign_g",
	    "_arrayExpSliceMinSliceAssign_h",
	    "_arrayExpSliceMinSliceAssign_i",
	    "_arrayExpSliceMinSliceAssign_k",
	    "_arrayExpSliceMinSliceAssign_s",
	    "_arrayExpSliceMinSliceAssign_t",
	    "_arrayExpSliceMinSliceAssign_u",
	    "_arrayExpSliceMinSliceAssign_w",

	    "_arrayExpSliceMinass_a",
	    "_arrayExpSliceMinass_d",		// T[]-=T
	    "_arrayExpSliceMinass_f",		// T[]-=T
	    "_arrayExpSliceMinass_g",
	    "_arrayExpSliceMinass_h",
	    "_arrayExpSliceMinass_i",
	    "_arrayExpSliceMinass_k",
	    "_arrayExpSliceMinass_s",
	    "_arrayExpSliceMinass_t",
	    "_arrayExpSliceMinass_u",
	    "_arrayExpSliceMinass_w",

	    "_arrayExpSliceMulass_d",		// T[]*=T
	    "_arrayExpSliceMulass_f",		// T[]*=T
	    "_arrayExpSliceMulass_i",
	    "_arrayExpSliceMulass_k",
	    "_arrayExpSliceMulass_s",
	    "_arrayExpSliceMulass_t",
	    "_arrayExpSliceMulass_u",
	    "_arrayExpSliceMulass_w",

	    "_arraySliceExpAddSliceAssign_a",
	    "_arraySliceExpAddSliceAssign_d",	// T[]=T[]+T
	    "_arraySliceExpAddSliceAssign_f",	// T[]=T[]+T
	    "_arraySliceExpAddSliceAssign_g",
	    "_arraySliceExpAddSliceAssign_h",
	    "_arraySliceExpAddSliceAssign_i",
	    "_arraySliceExpAddSliceAssign_k",
	    "_arraySliceExpAddSliceAssign_s",
	    "_arraySliceExpAddSliceAssign_t",
	    "_arraySliceExpAddSliceAssign_u",
	    "_arraySliceExpAddSliceAssign_w",

	    "_arraySliceExpDivSliceAssign_d",	// T[]=T[]/T
	    "_arraySliceExpDivSliceAssign_f",	// T[]=T[]/T

	    "_arraySliceExpMinSliceAssign_a",
	    "_arraySliceExpMinSliceAssign_d",	// T[]=T[]-T
	    "_arraySliceExpMinSliceAssign_f",	// T[]=T[]-T
	    "_arraySliceExpMinSliceAssign_g",
	    "_arraySliceExpMinSliceAssign_h",
	    "_arraySliceExpMinSliceAssign_i",
	    "_arraySliceExpMinSliceAssign_k",
	    "_arraySliceExpMinSliceAssign_s",
	    "_arraySliceExpMinSliceAssign_t",
	    "_arraySliceExpMinSliceAssign_u",
	    "_arraySliceExpMinSliceAssign_w",

	    "_arraySliceExpMulSliceAddass_d",	// T[] += T[]*T
	    "_arraySliceExpMulSliceAddass_f",
	    "_arraySliceExpMulSliceAddass_r",

	    "_arraySliceExpMulSliceAssign_d",	// T[]=T[]*T
	    "_arraySliceExpMulSliceAssign_f",	// T[]=T[]*T
	    "_arraySliceExpMulSliceAssign_i",
	    "_arraySliceExpMulSliceAssign_k",
	    "_arraySliceExpMulSliceAssign_s",
	    "_arraySliceExpMulSliceAssign_t",
	    "_arraySliceExpMulSliceAssign_u",
	    "_arraySliceExpMulSliceAssign_w",

	    "_arraySliceExpMulSliceMinass_d",	// T[] -= T[]*T
	    "_arraySliceExpMulSliceMinass_f",
	    "_arraySliceExpMulSliceMinass_r",

	    "_arraySliceSliceAddSliceAssign_a",
	    "_arraySliceSliceAddSliceAssign_d",	// T[]=T[]+T[]
	    "_arraySliceSliceAddSliceAssign_f",	// T[]=T[]+T[]
	    "_arraySliceSliceAddSliceAssign_g",
	    "_arraySliceSliceAddSliceAssign_h",
	    "_arraySliceSliceAddSliceAssign_i",
	    "_arraySliceSliceAddSliceAssign_k",
	    "_arraySliceSliceAddSliceAssign_r",	// T[]=T[]+T[]
	    "_arraySliceSliceAddSliceAssign_s",
	    "_arraySliceSliceAddSliceAssign_t",
	    "_arraySliceSliceAddSliceAssign_u",
	    "_arraySliceSliceAddSliceAssign_w",

	    "_arraySliceSliceAddass_a",
	    "_arraySliceSliceAddass_d",		// T[]+=T[]
	    "_arraySliceSliceAddass_f",		// T[]+=T[]
	    "_arraySliceSliceAddass_g",
	    "_arraySliceSliceAddass_h",
	    "_arraySliceSliceAddass_i",
	    "_arraySliceSliceAddass_k",
	    "_arraySliceSliceAddass_s",
	    "_arraySliceSliceAddass_t",
	    "_arraySliceSliceAddass_u",
	    "_arraySliceSliceAddass_w",

	    "_arraySliceSliceMinSliceAssign_a",
	    "_arraySliceSliceMinSliceAssign_d",	// T[]=T[]-T[]
	    "_arraySliceSliceMinSliceAssign_f",	// T[]=T[]-T[]
	    "_arraySliceSliceMinSliceAssign_g",
	    "_arraySliceSliceMinSliceAssign_h",
	    "_arraySliceSliceMinSliceAssign_i",
	    "_arraySliceSliceMinSliceAssign_k",
	    "_arraySliceSliceMinSliceAssign_r",	// T[]=T[]-T[]
	    "_arraySliceSliceMinSliceAssign_s",
	    "_arraySliceSliceMinSliceAssign_t",
	    "_arraySliceSliceMinSliceAssign_u",
	    "_arraySliceSliceMinSliceAssign_w",

	    "_arraySliceSliceMinass_a",
	    "_arraySliceSliceMinass_d",		// T[]-=T[]
	    "_arraySliceSliceMinass_f",		// T[]-=T[]
	    "_arraySliceSliceMinass_g",
	    "_arraySliceSliceMinass_h",
	    "_arraySliceSliceMinass_i",
	    "_arraySliceSliceMinass_k",
	    "_arraySliceSliceMinass_s",
	    "_arraySliceSliceMinass_t",
	    "_arraySliceSliceMinass_u",
	    "_arraySliceSliceMinass_w",

	    "_arraySliceSliceMulSliceAssign_d",	// T[]=T[]*T[]
	    "_arraySliceSliceMulSliceAssign_f",	// T[]=T[]*T[]
	    "_arraySliceSliceMulSliceAssign_i",
	    "_arraySliceSliceMulSliceAssign_k",
	    "_arraySliceSliceMulSliceAssign_s",
	    "_arraySliceSliceMulSliceAssign_t",
	    "_arraySliceSliceMulSliceAssign_u",
	    "_arraySliceSliceMulSliceAssign_w",

	    "_arraySliceSliceMulass_d",		// T[]*=T[]
	    "_arraySliceSliceMulass_f",		// T[]*=T[]
	    "_arraySliceSliceMulass_i",
	    "_arraySliceSliceMulass_k",
	    "_arraySliceSliceMulass_s",
	    "_arraySliceSliceMulass_t",
	    "_arraySliceSliceMulass_u",
	    "_arraySliceSliceMulass_w",
	};

	int i = binary(name, libArrayopFuncs, sizeof(libArrayopFuncs) / sizeof(char *));
	if (i == -1)
	{
#ifdef DEBUG	// Make sure our array is alphabetized
	    for (i = 0; i < sizeof(libArrayopFuncs) / sizeof(char *); i++)
	    {
		if (strcmp(name, libArrayopFuncs[i]) == 0)
		    assert(0);
	    }
#endif
	    /* Not in library, so generate it.
	     * Construct the function body:
	     *	foreach (i; 0 .. p.length)    for (size_t i = 0; i < p.length; i++)
	     *	    loopbody;
	     *	return p;
	     */

	    Arguments *fparams = new Arguments();
	    Expression *loopbody = buildArrayLoop(fparams);
	    Argument *p = (Argument *)fparams->data[0 /*fparams->dim - 1*/];
#if DMDV1
	    // for (size_t i = 0; i < p.length; i++)
	    Initializer *init = new ExpInitializer(0, new IntegerExp(0, 0, Type::tsize_t));
	    Dsymbol *d = new VarDeclaration(0, Type::tsize_t, Id::p, init);
	    Statement *s1 = new ForStatement(0,
		new DeclarationStatement(0, d),
		new CmpExp(TOKlt, 0, new IdentifierExp(0, Id::p), new ArrayLengthExp(0, new IdentifierExp(0, p->ident))),
		new PostExp(TOKplusplus, 0, new IdentifierExp(0, Id::p)),
		new ExpStatement(0, loopbody));
#else
	    // foreach (i; 0 .. p.length)
	    Statement *s1 = new ForeachRangeStatement(0, TOKforeach,
		new Argument(0, NULL, Id::p, NULL),
		new IntegerExp(0, 0, Type::tint32),
		new ArrayLengthExp(0, new IdentifierExp(0, p->ident)),
		new ExpStatement(0, loopbody));
#endif
	    Statement *s2 = new ReturnStatement(0, new IdentifierExp(0, p->ident));
	    //printf("s2: %s\n", s2->toChars());
	    Statement *fbody = new CompoundStatement(0, s1, s2);

	    /* Construct the function
	     */
	    TypeFunction *ftype = new TypeFunction(fparams, type, 0, LINKc);
	    //printf("ftype: %s\n", ftype->toChars());
	    fd = new FuncDeclaration(0, 0, Lexer::idPool(name), STCundefined, ftype);
	    fd->fbody = fbody;
	    fd->protection = PROTpublic;
	    fd->linkage = LINKc;

	    sc->module->importedFrom->members->push(fd);

	    sc = sc->push();
	    sc->parent = sc->module->importedFrom;
	    sc->stc = 0;
	    sc->linkage = LINKc;
	    fd->semantic(sc);
	    sc->pop();
	}
	else
	{   /* In library, refer to it.
	     */
        // LLVMDC FIXME   
	    fd = FuncDeclaration::genCfunc(NULL, type, name);
	}
	sv->ptrvalue = fd;	// cache symbol in hash table
    }

    /* Call the function fd(arguments)
     */
    Expression *ec = new VarExp(0, fd);
    Expression *e = new CallExp(loc, ec, arguments);
    e->type = type;
    return e;
}

/******************************************
 * Construct the identifier for the array operation function,
 * and build the argument list to pass to it.
 */

void Expression::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    buf->writestring("Exp");
    arguments->shift(this);
}

void SliceExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    buf->writestring("Slice");
    arguments->shift(this);
}

void AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    /* Evaluate assign expressions right to left
     */
    e2->buildArrayIdent(buf, arguments);
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Assign");
}

#define X(Str) \
void Str##AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments) \
{							\
    /* Evaluate assign expressions right to left	\
     */							\
    e2->buildArrayIdent(buf, arguments);		\
    e1->buildArrayIdent(buf, arguments);		\
    buf->writestring(#Str);				\
    buf->writestring("ass");				\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

void NegExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Neg");
}

void ComExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Com");
}

#define X(Str) \
void Str##Exp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)	\
{									\
    /* Evaluate assign expressions left to right			\
     */									\
    e1->buildArrayIdent(buf, arguments);				\
    e2->buildArrayIdent(buf, arguments);				\
    buf->writestring(#Str);						\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

/******************************************
 * Construct the inner loop for the array operation function,
 * and build the parameter list.
 */

Expression *Expression::buildArrayLoop(Arguments *fparams)
{
    Identifier *id = Identifier::generateId("c", fparams->dim);
    Argument *param = new Argument(0, type, id, NULL);
    fparams->shift(param);
    Expression *e = new IdentifierExp(0, id);
    return e;
}

Expression *SliceExp::buildArrayLoop(Arguments *fparams)
{
    Identifier *id = Identifier::generateId("p", fparams->dim);
    Argument *param = new Argument(STCconst, type, id, NULL);
    fparams->shift(param);
    Expression *e = new IdentifierExp(0, id);
    Expressions *arguments = new Expressions();
    Expression *index = new IdentifierExp(0, Id::p);
    arguments->push(index);
    e = new ArrayExp(0, e, arguments);
    return e;
}

Expression *AssignExp::buildArrayLoop(Arguments *fparams)
{
    /* Evaluate assign expressions right to left
     */
    Expression *ex2 = e2->buildArrayLoop(fparams);
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Argument *param = (Argument *)fparams->data[0];
    param->storageClass = 0;
    Expression *e = new AssignExp(0, ex1, ex2);
    return e;
}

#define X(Str) \
Expression *Str##AssignExp::buildArrayLoop(Arguments *fparams)	\
{								\
    /* Evaluate assign expressions right to left		\
     */								\
    Expression *ex2 = e2->buildArrayLoop(fparams);		\
    Expression *ex1 = e1->buildArrayLoop(fparams);		\
    Argument *param = (Argument *)fparams->data[0];		\
    param->storageClass = 0;					\
    Expression *e = new Str##AssignExp(0, ex1, ex2);		\
    return e;							\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

Expression *NegExp::buildArrayLoop(Arguments *fparams)
{
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Expression *e = new NegExp(0, ex1);
    return e;
}

Expression *ComExp::buildArrayLoop(Arguments *fparams)
{
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Expression *e = new ComExp(0, ex1);
    return e;
}

#define X(Str) \
Expression *Str##Exp::buildArrayLoop(Arguments *fparams)	\
{								\
    /* Evaluate assign expressions left to right		\
     */								\
    Expression *ex1 = e1->buildArrayLoop(fparams);		\
    Expression *ex2 = e2->buildArrayLoop(fparams);		\
    Expression *e = new Str##Exp(0, ex1, ex2);			\
    return e;							\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X