view gen/toir.cpp @ 1351:8d501abecd24

Initial (but disabled) fix for ticket #294 , the actual part that fixes the bug is in a #if 0 block as I'm afraid it will cause regressions. I'm most likely not going to be around tonight, and maybe not tomorrow as well, so I'm pushing it in case someone wants to run some serious testing/investigate the problem noted in llvmhelpers.cpp : realignOffset .
author Tomas Lindquist Olsen <tomas.l.olsen gmail com>
date Thu, 14 May 2009 17:20:17 +0200
parents 15e9762bb620
children 8026319762be
line wrap: on
line source

// Backend stubs

/* DMDFE backend stubs
 * This file contains the implementations of the backend routines.
 * For dmdfe these do nothing but print a message saying the module
 * has been parsed. Substitute your own behaviors for these routimes.
 */

#include <stdio.h>
#include <math.h>
#include <fstream>

#include "gen/llvm.h"

#include "attrib.h"
#include "init.h"
#include "mtype.h"
#include "template.h"
#include "hdrgen.h"
#include "port.h"
#include "rmem.h"
#include "id.h"
#include "enum.h"

#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/typeinf.h"
#include "gen/complex.h"
#include "gen/dvalue.h"
#include "gen/aa.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/nested.h"
#include "gen/utils.h"

#include "llvm/Support/ManagedStatic.h"

//////////////////////////////////////////////////////////////////////////////////////////

void Expression::cacheLvalue(IRState* irs)
{
    error("expression %s does not mask any l-value", toChars());
    fatal();
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DeclarationExp::toElem(IRState* p)
{
    Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars());
    LOG_SCOPE;

    return DtoDeclarationExp(declaration);
}

//////////////////////////////////////////////////////////////////////////////////////////

void VarExp::cacheLvalue(IRState* p)
{
    Logger::println("Caching l-value of %s", toChars());
    LOG_SCOPE;
    cachedLvalue = toElem(p)->getLVal();
}

DValue* VarExp::toElem(IRState* p)
{
    Logger::print("VarExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(var);

    if (cachedLvalue)
    {
        LLValue* V = cachedLvalue;
        cachedLvalue = NULL;
        return new DVarValue(type, V);
    }

    if (VarDeclaration* vd = var->isVarDeclaration())
    {
        Logger::println("VarDeclaration ' %s ' of type ' %s '", vd->toChars(), vd->type->toChars());

        // this is an error! must be accessed with DotVarExp
        if (var->needThis())
        {
            error("need 'this' to access member %s", toChars());
            fatal();
        }

        // _arguments
        if (vd->ident == Id::_arguments && p->func()->_arguments)
        {
            Logger::println("Id::_arguments");
            LLValue* v = p->func()->_arguments;
            return new DVarValue(type, vd, v);
        }
        // _argptr
        else if (vd->ident == Id::_argptr && p->func()->_argptr)
        {
            Logger::println("Id::_argptr");
            LLValue* v = p->func()->_argptr;
            return new DVarValue(type, vd, v);
        }
        // _dollar
        else if (vd->ident == Id::dollar)
        {
            Logger::println("Id::dollar");
            assert(!p->arrays.empty());
            LLValue* tmp = DtoArrayLen(p->arrays.back());
            return new DImValue(type, tmp);
        }
        // typeinfo
        else if (TypeInfoDeclaration* tid = vd->isTypeInfoDeclaration())
        {
            Logger::println("TypeInfoDeclaration");
            tid->codegen(Type::sir);
            assert(tid->ir.getIrValue());
            const LLType* vartype = DtoType(type);
            LLValue* m = tid->ir.getIrValue();
            if (m->getType() != getPtrToType(vartype))
                m = p->ir->CreateBitCast(m, vartype, "tmp");
            return new DImValue(type, m);
        }
        // classinfo
        else if (ClassInfoDeclaration* cid = vd->isClassInfoDeclaration())
        {
            Logger::println("ClassInfoDeclaration: %s", cid->cd->toChars());
            cid->cd->codegen(Type::sir);;
            return new DVarValue(type, vd, cid->cd->ir.irStruct->getClassInfoSymbol());
        }
        // nested variable
    #if DMDV2
        else if (vd->nestedrefs.dim) {
    #else
        else if (vd->nestedref) {
    #endif
            Logger::println("nested variable");
            return DtoNestedVariable(loc, type, vd);
        }
        // function parameter
        else if (vd->isParameter()) {
            Logger::println("function param");
            Logger::println("type: %s", vd->type->toChars());
            FuncDeclaration* fd = vd->toParent2()->isFuncDeclaration();
            if (fd && fd != p->func()->decl) {
                Logger::println("nested parameter");
                return DtoNestedVariable(loc, type, vd);
            }
            else if (vd->storage_class & STClazy) {
                Logger::println("lazy parameter");
                assert(type->ty == Tdelegate);
                return new DVarValue(type, vd->ir.getIrValue());
            }
            else if (vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type) || llvm::isa<llvm::AllocaInst>(vd->ir.getIrValue())) {
                return new DVarValue(type, vd, vd->ir.getIrValue());
            }
            else if (llvm::isa<llvm::Argument>(vd->ir.getIrValue())) {
                return new DImValue(type, vd->ir.getIrValue());
            }
            else assert(0);
        }
        else {
            Logger::println("a normal variable");

            // take care of forward references of global variables
            if (vd->isDataseg() || (vd->storage_class & STCextern)) {
                vd->codegen(Type::sir);
            }

            LLValue* val;

            if (!vd->ir.isSet() || !(val = vd->ir.getIrValue())) {
                // FIXME: this error is bad!
                // We should be VERY careful about adding errors in general, as they have
                // a tendency to "mask" out the underlying problems ...
                error("variable %s not resolved", vd->toChars());
                if (Logger::enabled())
                    Logger::cout() << "unresolved variable had type: " << *DtoType(vd->type) << '\n';
                fatal();
            }

            if (vd->isDataseg() || (vd->storage_class & STCextern)) {
                DtoConstInitGlobal(vd);
                val = DtoBitCast(val, DtoType(type->pointerTo()));
            }

            return new DVarValue(type, vd, val);
        }
    }
    else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
    {
        Logger::println("FuncDeclaration");
        LLValue* func = 0;
        if (fdecl->llvmInternal == LLVMinline_asm) {
            error("special ldc inline asm is not a normal function");
            fatal();
        }
        else if (fdecl->llvmInternal != LLVMva_arg) {
            fdecl->codegen(Type::sir);
            func = fdecl->ir.irFunc->func;
        }
        return new DFuncValue(fdecl, func);
    }
    else if (StaticStructInitDeclaration* sdecl = var->isStaticStructInitDeclaration())
    {
        // this seems to be the static initialiser for structs
        Type* sdecltype = sdecl->type->toBasetype();
        Logger::print("Sym: type=%s\n", sdecltype->toChars());
        assert(sdecltype->ty == Tstruct);
        TypeStruct* ts = (TypeStruct*)sdecltype;
        assert(ts->sym);
        ts->sym->codegen(Type::sir);

        LLValue* initsym = ts->sym->ir.irStruct->getInitSymbol();
        initsym = DtoBitCast(initsym, DtoType(ts->pointerTo()));
        return new DVarValue(type, initsym);
    }
    else
    {
        assert(0 && "Unimplemented VarExp type");
    }

    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* VarExp::toConstElem(IRState* p)
{
    Logger::print("VarExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    if (StaticStructInitDeclaration* sdecl = var->isStaticStructInitDeclaration())
    {
        // this seems to be the static initialiser for structs
        Type* sdecltype = sdecl->type->toBasetype();
        Logger::print("Sym: type=%s\n", sdecltype->toChars());
        assert(sdecltype->ty == Tstruct);
        TypeStruct* ts = (TypeStruct*)sdecltype;
        ts->sym->codegen(Type::sir);

        return ts->sym->ir.irStruct->getDefaultInit();
    }

    if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration())
    {
        const LLType* vartype = DtoType(type);
        LLConstant* m = DtoTypeInfoOf(ti->tinfo, false);
        if (m->getType() != getPtrToType(vartype))
            m = llvm::ConstantExpr::getBitCast(m, vartype);
        return m;
    }

    VarDeclaration* vd = var->isVarDeclaration();
    if (vd && vd->isConst() && vd->init)
    {
        // return the initializer
        return DtoConstInitializer(loc, type, vd->init);
    }

    // fail
    error("non-constant expression %s", toChars());
    return llvm::UndefValue::get(DtoType(type));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* IntegerExp::toElem(IRState* p)
{
    Logger::print("IntegerExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    return new DConstValue(type, c);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* IntegerExp::toConstElem(IRState* p)
{
    Logger::print("IntegerExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    const LLType* t = DtoType(type);
    if (isaPointer(t)) {
        Logger::println("pointer");
        LLConstant* i = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)value,false);
        return llvm::ConstantExpr::getIntToPtr(i, t);
    }
    assert(llvm::isa<LLIntegerType>(t));
    LLConstant* c = llvm::ConstantInt::get(t,(uint64_t)value,!type->isunsigned());
    assert(c);
    if (Logger::enabled())
        Logger::cout() << "value = " << *c << '\n';
    return c;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* RealExp::toElem(IRState* p)
{
    Logger::print("RealExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    return new DConstValue(type, c);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* RealExp::toConstElem(IRState* p)
{
    Logger::print("RealExp::toConstElem: %s @ %s | %LX\n", toChars(), type->toChars(), value);
    LOG_SCOPE;
    Type* t = type->toBasetype();
    return DtoConstFP(t, value);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NullExp::toElem(IRState* p)
{
    Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    return new DNullValue(type, c);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* NullExp::toConstElem(IRState* p)
{
    Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars());
    LOG_SCOPE;
    const LLType* t = DtoType(type);
    if (type->ty == Tarray) {
        assert(isaStruct(t));
        return llvm::ConstantAggregateZero::get(t);
    }
    else {
        return llvm::Constant::getNullValue(t);
    }
    assert(0);
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ComplexExp::toElem(IRState* p)
{
    Logger::print("ComplexExp::toElem(): %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    LLValue* res;

    if (c->isNullValue()) {
        Type* t = type->toBasetype();
        if (t->ty == Tcomplex32)
            c = DtoConstFP(Type::tfloat32, 0);
        else if (t->ty == Tcomplex64)
            c = DtoConstFP(Type::tfloat64, 0);
        else if (t->ty == Tcomplex80)
            c = DtoConstFP(Type::tfloat80, 0);
        else
            assert(0);
        res = DtoAggrPair(DtoType(type), c, c);
    }
    else {
        res = DtoAggrPair(DtoType(type), c->getOperand(0), c->getOperand(1));
    }

    return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* ComplexExp::toConstElem(IRState* p)
{
    Logger::print("ComplexExp::toConstElem(): %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    return DtoConstComplex(type, value.re, value.im);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* StringExp::toElem(IRState* p)
{
    Logger::print("StringExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* dtype = type->toBasetype();
    Type* cty = dtype->nextOf()->toBasetype();

    const LLType* ct = DtoTypeNotVoid(cty);
    //printf("ct = %s\n", type->nextOf()->toChars());
    const LLArrayType* at = LLArrayType::get(ct,len+1);

    LLConstant* _init;
    if (cty->size() == 1) {
        uint8_t* str = (uint8_t*)string;
        std::string cont((char*)str, len);
        _init = llvm::ConstantArray::get(cont,true);
    }
    else if (cty->size() == 2) {
        uint16_t* str = (uint16_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else if (cty->size() == 4) {
        uint32_t* str = (uint32_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else
    assert(0);

    llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
    if (Logger::enabled())
        Logger::cout() << "type: " << *at << "\ninit: " << *_init << '\n';
    llvm::GlobalVariable* gvar = new llvm::GlobalVariable(at,true,_linkage,_init,".str",gIR->module);

    llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
    LLConstant* idxs[2] = { zero, zero };
    LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);

    if (dtype->ty == Tarray) {
        LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
        return new DImValue(type, DtoConstSlice(clen, arrptr));
    }
    else if (dtype->ty == Tsarray) {
        const LLType* dstType = getPtrToType(LLArrayType::get(ct, len));
        LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
        return new DVarValue(type, emem);
    }
    else if (dtype->ty == Tpointer) {
        return new DImValue(type, arrptr);
    }

    assert(0);
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* StringExp::toConstElem(IRState* p)
{
    Logger::print("StringExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* t = type->toBasetype();
    Type* cty = t->nextOf()->toBasetype();

    bool nullterm = (t->ty != Tsarray);
    size_t endlen = nullterm ? len+1 : len;

    const LLType* ct = DtoType(cty);
    const LLArrayType* at = LLArrayType::get(ct,endlen);

    LLConstant* _init;
    if (cty->size() == 1) {
        uint8_t* str = (uint8_t*)string;
        std::string cont((char*)str, len);
        _init = llvm::ConstantArray::get(cont, nullterm);
    }
    else if (cty->size() == 2) {
        uint16_t* str = (uint16_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        if (nullterm)
            vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else if (cty->size() == 4) {
        uint32_t* str = (uint32_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        if (nullterm)
            vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else
    assert(0);

    if (t->ty == Tsarray)
    {
        return _init;
    }

    llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;
    llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_init->getType(),true,_linkage,_init,".str",gIR->module);

    llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
    LLConstant* idxs[2] = { zero, zero };
    LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);

    if (t->ty == Tpointer) {
        return arrptr;
    }
    else if (t->ty == Tarray) {
        LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
        return DtoConstSlice(clen, arrptr);
    }

    assert(0);
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AssignExp::toElem(IRState* p)
{
    Logger::print("AssignExp::toElem: %s | (%s)(%s = %s)\n", toChars(), type->toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0);
    LOG_SCOPE;

    if (e1->op == TOKarraylength)
    {
        Logger::println("performing array.length assignment");
        ArrayLengthExp *ale = (ArrayLengthExp *)e1;
        DValue* arr = ale->e1->toElem(p);
        DVarValue arrval(ale->e1->type, arr->getLVal());
        DValue* newlen = e2->toElem(p);
        DSliceValue* slice = DtoResizeDynArray(arrval.getType(), &arrval, newlen);
        DtoAssign(loc, &arrval, slice);
        return newlen;
    }

    Logger::println("performing normal assignment");

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);
    DtoAssign(loc, l, r);

    if (l->isSlice())
        return l;

    return r;
}

//////////////////////////////////////////////////////////////////////////////////////////

/// Finds the proper lvalue for a binassign expressions.
/// Makes sure the given LHS expression is only evaluated once.
static Expression* findLvalue(IRState* irs, Expression* exp)
{
    Expression* e = exp;

    // skip past any casts
    while(e->op == TOKcast)
        e = ((CastExp*)e)->e1;

    // cache lvalue and return
    e->cacheLvalue(irs);
    return e;
}

#define BIN_ASSIGN(X) \
DValue* X##AssignExp::toElem(IRState* p) \
{ \
    Logger::print(#X"AssignExp::toElem: %s @ %s\n", toChars(), type->toChars()); \
    LOG_SCOPE; \
    X##Exp e3(loc, e1, e2); \
    e3.type = e1->type; \
    DValue* dst = findLvalue(p, e1)->toElem(p); \
    DValue* res = e3.toElem(p); \
    DValue* stval = DtoCast(loc, res, dst->getType()); \
    DtoAssign(loc, dst, stval); \
    return DtoCast(loc, res, type); \
}

BIN_ASSIGN(Add)
BIN_ASSIGN(Min)
BIN_ASSIGN(Mul)
BIN_ASSIGN(Div)
BIN_ASSIGN(Mod)
BIN_ASSIGN(And)
BIN_ASSIGN(Or)
BIN_ASSIGN(Xor)
BIN_ASSIGN(Shl)
BIN_ASSIGN(Shr)
BIN_ASSIGN(Ushr)

#undef BIN_ASSIGN

//////////////////////////////////////////////////////////////////////////////////////////

static void errorOnIllegalArrayOp(Expression* base, Expression* e1, Expression* e2)
{
    Type* t1 = e1->type->toBasetype();
    Type* t2 = e2->type->toBasetype();

    // valid array ops would have been transformed by optimize
    if ((t1->ty == Tarray || t1->ty == Tsarray) &&
        (t2->ty == Tarray || t2->ty == Tsarray)
       ) 
    {
        error("Array operation %s not recognized", base->toChars());
        fatal();
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AddExp::toElem(IRState* p)
{
    Logger::print("AddExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = type->toBasetype();
    Type* e1type = e1->type->toBasetype();
    Type* e1next = e1type->nextOf() ? e1type->nextOf()->toBasetype() : NULL;
    Type* e2type = e2->type->toBasetype();

    errorOnIllegalArrayOp(this, e1, e2);

    if (e1type != e2type) {
        if (e1type->ty == Tpointer) {
            Logger::println("add to pointer");
            if (DConstValue* cv = r->isConst()) {
                if (cv->c->isNullValue()) {
                    Logger::println("is zero");
                    return new DImValue(type, l->getRVal());
                }
            }
            LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), r->getRVal(), "tmp", p->scopebb());
            return new DImValue(type, v);
        }
        else if (t->iscomplex()) {
            return DtoComplexAdd(loc, type, l, r);
        }
        assert(0);
    }
    else if (t->iscomplex()) {
        return DtoComplexAdd(loc, type, l, r);
    }
    else {
        return DtoBinAdd(l,r);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* MinExp::toElem(IRState* p)
{
    Logger::print("MinExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = type->toBasetype();
    Type* t1 = e1->type->toBasetype();
    Type* t2 = e2->type->toBasetype();

    errorOnIllegalArrayOp(this, e1, e2);

    if (t1->ty == Tpointer && t2->ty == Tpointer) {
        LLValue* lv = l->getRVal();
        LLValue* rv = r->getRVal();
        if (Logger::enabled())
            Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
        lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp");
        rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp");
        LLValue* diff = p->ir->CreateSub(lv,rv,"tmp");
        if (diff->getType() != DtoType(type))
            diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp");
        return new DImValue(type, diff);
    }
    else if (t1->ty == Tpointer) {
        LLValue* idx = p->ir->CreateNeg(r->getRVal(), "tmp");
        LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), idx, "tmp", p->scopebb());
        return new DImValue(type, v);
    }
    else if (t->iscomplex()) {
        return DtoComplexSub(loc, type, l, r);
    }
    else {
        return DtoBinSub(l,r);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* MulExp::toElem(IRState* p)
{
    Logger::print("MulExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    errorOnIllegalArrayOp(this, e1, e2);

    if (type->iscomplex()) {
        return DtoComplexMul(loc, type, l, r);
    }

    return DtoBinMul(type, l, r);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DivExp::toElem(IRState* p)
{
    Logger::print("DivExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    errorOnIllegalArrayOp(this, e1, e2);

    if (type->iscomplex()) {
        return DtoComplexDiv(loc, type, l, r);
    }

    return DtoBinDiv(type, l, r);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ModExp::toElem(IRState* p)
{
    Logger::print("ModExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    errorOnIllegalArrayOp(this, e1, e2);

    return DtoBinRem(type, l, r);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CallExp::toElem(IRState* p)
{
    Logger::print("CallExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // handle magic inline asm
    if (e1->op == TOKvar)
    {
        VarExp* ve = (VarExp*)e1;
        if (FuncDeclaration* fd = ve->var->isFuncDeclaration())
        {
            if (fd->llvmInternal == LLVMinline_asm)
            {
                return DtoInlineAsmExpr(loc, fd, arguments);
            }
        }
    }

    // get the callee value
    DValue* fnval = e1->toElem(p);

    // get func value if any
    DFuncValue* dfnval = fnval->isFunc();

    // handle magic intrinsics (mapping to instructions)
    bool va_intrinsic = false;
    if (dfnval && dfnval->func)
    {
        FuncDeclaration* fndecl = dfnval->func;
        // va_start instruction
        if (fndecl->llvmInternal == LLVMva_start) {
            // llvm doesn't need the second param hence the override
            Expression* exp = (Expression*)arguments->data[0];
            DValue* expv = exp->toElem(p);
            LLValue* arg = DtoBitCast(expv->getLVal(), getVoidPtrType());
            return new DImValue(type, gIR->ir->CreateCall(GET_INTRINSIC_DECL(vastart), arg, ""));
        }
        // va_arg instruction
        else if (fndecl->llvmInternal == LLVMva_arg) {
            return DtoVaArg(loc, type, (Expression*)arguments->data[0]);
        }
        // C alloca
        else if (fndecl->llvmInternal == LLVMalloca) {
            Expression* exp = (Expression*)arguments->data[0];
            DValue* expv = exp->toElem(p);
            if (expv->getType()->toBasetype()->ty != Tint32)
                expv = DtoCast(loc, expv, Type::tint32);
            return new DImValue(type, p->ir->CreateAlloca(LLType::Int8Ty, expv->getRVal(), ".alloca"));
        }
    }

    return DtoCallFunction(loc, type, fnval, arguments);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CastExp::toElem(IRState* p)
{
    Logger::print("CastExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // get the value to cast
    DValue* u = e1->toElem(p);

    // cast it to the 'to' type, if necessary
    DValue* v = u;
    if (!to->equals(e1->type))
        v = DtoCast(loc, u, to);

    // paint the type, if necessary
    if (!type->equals(to))
        v = DtoPaintType(loc, v, type);

    // return the new rvalue
    return v;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* CastExp::toConstElem(IRState* p)
{
    Logger::print("CastExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    LLConstant* res;
    const LLType* lltype = DtoType(type);
    Type* tb = to->toBasetype();

    // string literal to dyn array:
    // reinterpret the string data as an array, calculate the length
    if (e1->op == TOKstring && tb->ty == Tarray) {
/*        StringExp *strexp = (StringExp*)e1;
        size_t datalen = strexp->sz * strexp->len;
        Type* eltype = tb->nextOf()->toBasetype();
        if (datalen % eltype->size() != 0) {
            error("the sizes don't line up");
            return e1->toConstElem(p);
        }
        size_t arrlen = datalen / eltype->size();*/
        error("ct cast of string to dynamic array not fully implemented");
        return e1->toConstElem(p);
    }
    // pointer to pointer
    else if (tb->ty == Tpointer && e1->type->toBasetype()->ty == Tpointer) {
        res = llvm::ConstantExpr::getBitCast(e1->toConstElem(p), lltype);
    }
    else {
        error("can not cast %s to %s at compile time", e1->type->toChars(), type->toChars());
        return e1->toConstElem(p);
    }

    return res;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* SymOffExp::toElem(IRState* p)
{
    Logger::print("SymOffExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(0 && "SymOffExp::toElem should no longer be called :/");
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AddrExp::toElem(IRState* p)
{
    Logger::println("AddrExp::toElem: %s @ %s", toChars(), type->toChars());
    LOG_SCOPE;
    DValue* v = e1->toElem(p);
    if (v->isField()) {
        Logger::println("is field");
        return v;
    }
    else if (DFuncValue* fv = v->isFunc()) {
        Logger::println("is func");
        //Logger::println("FuncDeclaration");
        FuncDeclaration* fd = fv->func;
        assert(fd);
        fd->codegen(Type::sir);
        return new DFuncValue(fd, fd->ir.irFunc->func);
    }
    else if (DImValue* im = v->isIm()) {
        Logger::println("is immediate");
        return v;
    }
    Logger::println("is nothing special");

    // we special case here, since apparently taking the address of a slice is ok
    LLValue* lval;
    if (v->isLVal())
        lval = v->getLVal();
    else
    {
        assert(v->isSlice());
        LLValue* rval = v->getRVal();
        lval = DtoRawAlloca(rval->getType(), 0, ".tmp_slice_storage");
        DtoStore(rval, lval);
    }

    if (Logger::enabled())
        Logger::cout() << "lval: " << *lval << '\n';

    return new DImValue(type, DtoBitCast(lval, DtoType(type)));
}

LLConstant* AddrExp::toConstElem(IRState* p)
{
    // FIXME: this should probably be generalized more so we don't
    // need to have a case for each thing we can take the address of

    // address of global variable
    if (e1->op == TOKvar)
    {
        VarExp* vexp = (VarExp*)e1;

        // make sure 'this' isn't needed
        if (vexp->var->needThis())
        {
            error("need 'this' to access %s", vexp->var->toChars());
            fatal();
        }

        // global variable
        if (VarDeclaration* vd = vexp->var->isVarDeclaration())
        {
            vd->codegen(Type::sir);
            LLConstant* llc = llvm::dyn_cast<LLConstant>(vd->ir.getIrValue());
            assert(llc);
            return llc;
        }
        // static function
        else if (FuncDeclaration* fd = vexp->var->isFuncDeclaration())
        {
            fd->codegen(Type::sir);
            IrFunction* irfunc = fd->ir.irFunc;
            return irfunc->func;
        }
        // something else
        else
        {
            // fail
            goto Lerr;
        }
    }
    // address of indexExp
    else if (e1->op == TOKindex)
    {
        IndexExp* iexp = (IndexExp*)e1;

        // indexee must be global static array var
        assert(iexp->e1->op == TOKvar);
        VarExp* vexp = (VarExp*)iexp->e1;
        VarDeclaration* vd = vexp->var->isVarDeclaration();
        assert(vd);
        assert(vd->type->toBasetype()->ty == Tsarray);
        assert(vd->ir.irGlobal);

        // get index
        LLConstant* index = iexp->e2->toConstElem(p);
        assert(index->getType() == DtoSize_t());

        // gep
        LLConstant* idxs[2] = { DtoConstSize_t(0), index };
        LLConstant* gep = llvm::ConstantExpr::getGetElementPtr(isaConstant(vd->ir.irGlobal->value), idxs, 2);

        // bitcast to requested type
        assert(type->toBasetype()->ty == Tpointer);
        return DtoBitCast(gep, DtoType(type));
    }
    else if (e1->op == TOKstructliteral)
    {
        // FIXME: is this right?
        StructLiteralExp* slexp = (StructLiteralExp*)e1;
        LLConstant* lit = slexp->toConstElem(p);
        return lit;
    }
    // not yet supported
    else
    {
    Lerr:
        error("constant expression '%s' not yet implemented", toChars());
        fatal();
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

void PtrExp::cacheLvalue(IRState* p)
{
    Logger::println("Caching l-value of %s", toChars());
    LOG_SCOPE;
    cachedLvalue = e1->toElem(p)->getRVal();
}

DValue* PtrExp::toElem(IRState* p)
{
    Logger::println("PtrExp::toElem: %s @ %s", toChars(), type->toChars());
    LOG_SCOPE;

    // function pointers are special
    if (type->toBasetype()->ty == Tfunction)
    {
        assert(!cachedLvalue);
        return new DImValue(type, e1->toElem(p)->getRVal());
    }

    // get the rvalue and return it as an lvalue
    LLValue* V;
    if (cachedLvalue)
    {
        V = cachedLvalue;
        cachedLvalue = NULL;
    }
    else
    {
        V = e1->toElem(p)->getRVal();
    }
    return new DVarValue(type, V);
}

//////////////////////////////////////////////////////////////////////////////////////////

void DotVarExp::cacheLvalue(IRState* p)
{
    Logger::println("Caching l-value of %s", toChars());
    LOG_SCOPE;
    cachedLvalue = toElem(p)->getLVal();
}

DValue* DotVarExp::toElem(IRState* p)
{
    Logger::print("DotVarExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    if (cachedLvalue)
    {
        LLValue *V = cachedLvalue;
        cachedLvalue = NULL;
        VarDeclaration* vd = var->isVarDeclaration();
        assert(vd);
        return new DVarValue(type, vd, V);
    }

    DValue* l = e1->toElem(p);

    Type* t = type->toBasetype();
    Type* e1type = e1->type->toBasetype();

    //Logger::println("e1type=%s", e1type->toChars());
    //Logger::cout() << *DtoType(e1type) << '\n';

    if (VarDeclaration* vd = var->isVarDeclaration()) {
        LLValue* arrptr;
        // indexing struct pointer
        if (e1type->ty == Tpointer) {
            assert(e1type->nextOf()->ty == Tstruct);
            TypeStruct* ts = (TypeStruct*)e1type->nextOf();
            arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
        }
        // indexing normal struct
        else if (e1type->ty == Tstruct) {
            TypeStruct* ts = (TypeStruct*)e1type;
            arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
        }
        // indexing class
        else if (e1type->ty == Tclass) {
            TypeClass* tc = (TypeClass*)e1type;
            arrptr = DtoIndexClass(l->getRVal(), tc->sym, vd);
        }
        else
            assert(0);

        //Logger::cout() << "mem: " << *arrptr << '\n';
        return new DVarValue(type, vd, arrptr);
    }
    else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
    {
        DtoResolveDsymbol(fdecl);

        LLValue* funcval;
        LLValue* vthis2 = 0;
        if (e1type->ty == Tclass) {
            TypeClass* tc = (TypeClass*)e1type;
            if (tc->sym->isInterfaceDeclaration()) {
                vthis2 = DtoCastInterfaceToObject(l, NULL)->getRVal();
            }
        }
        LLValue* vthis = l->getRVal();
        if (!vthis2) vthis2 = vthis;

        //
        // decide whether this function needs to be looked up in the vtable
        //
        bool vtbllookup = fdecl->isAbstract() || (!fdecl->isFinal() && fdecl->isVirtual());
        
        // even virtual functions are looked up directly if super or DotTypeExp
        // are used, thus we need to walk through the this expression and check
        Expression* e = e1;
        while (e && vtbllookup) {
            if (e->op == TOKsuper || e->op == TOKdottype)
                vtbllookup = false;
            else if (e->op == TOKcast)
                e = ((CastExp*)e)->e1;
            else
                break;
        }
        
        //
        // look up function
        //
        if (!vtbllookup) {
            fdecl->codegen(Type::sir);
            funcval = fdecl->ir.irFunc->func;
            assert(funcval);
        }
        else {
            assert(fdecl->vtblIndex > 0);
            assert(e1type->ty == Tclass);

            LLValue* zero = DtoConstUint(0);
            size_t vtblidx = fdecl->vtblIndex;
            if (Logger::enabled())
                Logger::cout() << "vthis: " << *vthis << '\n';
            funcval = DtoGEP(vthis, zero, zero);
            funcval = DtoLoad(funcval);
            Logger::println("vtblidx = %lu", vtblidx);
            funcval = DtoGEP(funcval, zero, DtoConstUint(vtblidx), toChars());
            funcval = DtoLoad(funcval);

            funcval = DtoBitCast(funcval, getPtrToType(DtoType(fdecl->type)));
            if (Logger::enabled())
                Logger::cout() << "funcval casted: " << *funcval << '\n';
        }

        return new DFuncValue(fdecl, funcval, vthis2);
    }
    else {
        printf("unsupported dotvarexp: %s\n", var->toChars());
    }

    assert(0);
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ThisExp::toElem(IRState* p)
{
    Logger::print("ThisExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // regular this expr
    if (VarDeclaration* vd = var->isVarDeclaration()) {
        LLValue* v;
        if (vd->toParent2() != p->func()->decl) {
            Logger::println("nested this exp");
            return DtoNestedVariable(loc, type, vd);
        }
        else {
            Logger::println("normal this exp");
            v = p->func()->thisArg;
        }
        return new DVarValue(type, vd, v);
    }

    // anything we're not yet handling ?
    assert(0 && "no var in ThisExp");
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

void IndexExp::cacheLvalue(IRState* p)
{
    Logger::println("Caching l-value of %s", toChars());
    LOG_SCOPE;
    cachedLvalue = toElem(p)->getLVal();
}

DValue* IndexExp::toElem(IRState* p)
{
    Logger::print("IndexExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    if (cachedLvalue)
    {
        LLValue* V = cachedLvalue;
        cachedLvalue = NULL;
        return new DVarValue(type, V);
    }

    DValue* l = e1->toElem(p);

    Type* e1type = e1->type->toBasetype();

    p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
    DValue* r = e2->toElem(p);
    p->arrays.pop_back();

    LLValue* zero = DtoConstUint(0);
    LLValue* one = DtoConstUint(1);

    LLValue* arrptr = 0;
    if (e1type->ty == Tpointer) {
        arrptr = DtoGEP1(l->getRVal(),r->getRVal());
    }
    else if (e1type->ty == Tsarray) {
        if(global.params.useArrayBounds) 
            DtoArrayBoundsCheck(loc, l, r, false);
        arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
    }
    else if (e1type->ty == Tarray) {
        if(global.params.useArrayBounds) 
            DtoArrayBoundsCheck(loc, l, r, false);
        arrptr = DtoArrayPtr(l);
        arrptr = DtoGEP1(arrptr,r->getRVal());
    }
    else if (e1type->ty == Taarray) {
        return DtoAAIndex(loc, type, l, r, modifiable);
    }
    else {
        Logger::println("invalid index exp! e1type: %s", e1type->toChars());
        assert(0);
    }
    return new DVarValue(type, arrptr);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* SliceExp::toElem(IRState* p)
{
    Logger::print("SliceExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
    // but this was broken if there *was* no original pointer, ie. a slice of a slice...
    // now all slices have *both* the 'len' and 'ptr' fields set to != null.

    // value being sliced
    LLValue* elen;
    LLValue* eptr;
    DValue* e = e1->toElem(p);

    // handle pointer slicing
    Type* etype = e1->type->toBasetype();
    if (etype->ty == Tpointer)
    {
        assert(lwr);
        eptr = e->getRVal();
    }
    // array slice
    else
    {
        eptr = DtoArrayPtr(e);
    }

    // has lower bound, pointer needs adjustment
    if (lwr)
    {
        // must have upper bound too then
        assert(upr);

        // get bounds (make sure $ works)
        p->arrays.push_back(e);
        DValue* lo = lwr->toElem(p);
        DValue* up = upr->toElem(p);
        p->arrays.pop_back();
        LLValue* vlo = lo->getRVal();
        LLValue* vup = up->getRVal();

        if(global.params.useArrayBounds && (etype->ty == Tsarray || etype->ty == Tarray))
            DtoArrayBoundsCheck(loc, e, up, true);

        // offset by lower
        eptr = DtoGEP1(eptr, vlo);

        // adjust length
        elen = p->ir->CreateSub(vup, vlo, "tmp");
    }
    // no bounds or full slice -> just convert to slice
    else
    {
        assert(e1->type->toBasetype()->ty != Tpointer);
        // if the sliceee is a static array, we use the length of that as DMD seems
        // to give contrary inconsistent sizesin some multidimensional static array cases.
        // (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
        if (etype->ty == Tsarray)
        {
            TypeSArray* tsa = (TypeSArray*)etype;
            elen = DtoConstSize_t(tsa->dim->toUInteger());

            // in this case, we also need to make sure the pointer is cast to the innermost element type
            eptr = DtoBitCast(eptr, DtoType(tsa->nextOf()->pointerTo()));
        }
        // for normal code the actual array length is what we want!
        else
        {
            elen = DtoArrayLen(e);
        }
    }

    return new DSliceValue(type, elen, eptr);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CmpExp::toElem(IRState* p)
{
    Logger::print("CmpExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = e1->type->toBasetype();
    Type* e2t = e2->type->toBasetype();

    LLValue* eval = 0;

    if (t->isintegral() || t->ty == Tpointer)
    {
        llvm::ICmpInst::Predicate cmpop;
        bool skip = false;
        // pointers don't report as being unsigned
        bool uns = (t->isunsigned() || t->ty == Tpointer);
        switch(op)
        {
        case TOKlt:
        case TOKul:
            cmpop = uns ? llvm::ICmpInst::ICMP_ULT : llvm::ICmpInst::ICMP_SLT;
            break;
        case TOKle:
        case TOKule:
            cmpop = uns ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_SLE;
            break;
        case TOKgt:
        case TOKug:
            cmpop = uns ? llvm::ICmpInst::ICMP_UGT : llvm::ICmpInst::ICMP_SGT;
            break;
        case TOKge:
        case TOKuge:
            cmpop = uns ? llvm::ICmpInst::ICMP_UGE : llvm::ICmpInst::ICMP_SGE;
            break;
        case TOKue:
            cmpop = llvm::ICmpInst::ICMP_EQ;
            break;
        case TOKlg:
            cmpop = llvm::ICmpInst::ICMP_NE;
            break;
        case TOKleg:
            skip = true;
            eval = llvm::ConstantInt::getTrue();
            break;
        case TOKunord:
            skip = true;
            eval = llvm::ConstantInt::getFalse();
            break;

        default:
            assert(0);
        }
        if (!skip)
        {
            LLValue* a = l->getRVal();
            LLValue* b = r->getRVal();
            if (Logger::enabled())
            {
                Logger::cout() << "type 1: " << *a << '\n';
                Logger::cout() << "type 2: " << *b << '\n';
            }
            if (a->getType() != b->getType())
                b = DtoBitCast(b, a->getType());
            eval = p->ir->CreateICmp(cmpop, a, b, "tmp");
        }
    }
    else if (t->isfloating())
    {
        llvm::FCmpInst::Predicate cmpop;
        switch(op)
        {
        case TOKlt:
            cmpop = llvm::FCmpInst::FCMP_OLT;break;
        case TOKle:
            cmpop = llvm::FCmpInst::FCMP_OLE;break;
        case TOKgt:
            cmpop = llvm::FCmpInst::FCMP_OGT;break;
        case TOKge:
            cmpop = llvm::FCmpInst::FCMP_OGE;break;
        case TOKunord:
            cmpop = llvm::FCmpInst::FCMP_UNO;break;
        case TOKule:
            cmpop = llvm::FCmpInst::FCMP_ULE;break;
        case TOKul:
            cmpop = llvm::FCmpInst::FCMP_ULT;break;
        case TOKuge:
            cmpop = llvm::FCmpInst::FCMP_UGE;break;
        case TOKug:
            cmpop = llvm::FCmpInst::FCMP_UGT;break;
        case TOKue:
            cmpop = llvm::FCmpInst::FCMP_UEQ;break;
        case TOKlg:
            cmpop = llvm::FCmpInst::FCMP_ONE;break;
        case TOKleg:
            cmpop = llvm::FCmpInst::FCMP_ORD;break;

        default:
            assert(0);
        }
        eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal(), "tmp");
    }
    else if (t->ty == Tsarray || t->ty == Tarray)
    {
        Logger::println("static or dynamic array");
        eval = DtoArrayCompare(loc,op,l,r);
    }
    else
    {
        assert(0 && "Unsupported CmpExp type");
    }

    return new DImValue(type, eval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* EqualExp::toElem(IRState* p)
{
    Logger::print("EqualExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = e1->type->toBasetype();
    Type* e2t = e2->type->toBasetype();
    //assert(t == e2t);

    LLValue* eval = 0;

    // the Tclass catches interface comparisons, regular
    // class equality should be rewritten as a.opEquals(b) by this time
    if (t->isintegral() || t->ty == Tpointer || t->ty == Tclass)
    {
        Logger::println("integral or pointer or interface");
        llvm::ICmpInst::Predicate cmpop;
        switch(op)
        {
        case TOKequal:
            cmpop = llvm::ICmpInst::ICMP_EQ;
            break;
        case TOKnotequal:
            cmpop = llvm::ICmpInst::ICMP_NE;
            break;
        default:
            assert(0);
        }
        LLValue* lv = l->getRVal();
        LLValue* rv = r->getRVal();
        if (rv->getType() != lv->getType()) {
            rv = DtoBitCast(rv, lv->getType());
        }
        if (Logger::enabled())
        {
            Logger::cout() << "lv: " << *lv << '\n';
            Logger::cout() << "rv: " << *rv << '\n';
        }
        eval = p->ir->CreateICmp(cmpop, lv, rv, "tmp");
    }
    else if (t->iscomplex())
    {
        Logger::println("complex");
        eval = DtoComplexEquals(loc, op, l, r);
    }
    else if (t->isfloating())
    {
        Logger::println("floating");
        llvm::FCmpInst::Predicate cmpop;
        switch(op)
        {
        case TOKequal:
            cmpop = llvm::FCmpInst::FCMP_OEQ;
            break;
        case TOKnotequal:
            cmpop = llvm::FCmpInst::FCMP_UNE;
            break;
        default:
            assert(0);
        }
        eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal(), "tmp");
    }
    else if (t->ty == Tsarray || t->ty == Tarray)
    {
        Logger::println("static or dynamic array");
        eval = DtoArrayEquals(loc,op,l,r);
    }
    else if (t->ty == Tdelegate)
    {
        Logger::println("delegate");
        eval = DtoDelegateEquals(op,l->getRVal(),r->getRVal());
    }
    else if (t->ty == Tstruct)
    {
        Logger::println("struct");
        // when this is reached it means there is no opEquals overload.
        eval = DtoStructEquals(op,l,r);
    }
    else
    {
        assert(0 && "Unsupported EqualExp type");
    }

    return new DImValue(type, eval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* PostExp::toElem(IRState* p)
{
    Logger::print("PostExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    LLValue* val = l->getRVal();
    LLValue* post = 0;

    Type* e1type = e1->type->toBasetype();
    Type* e2type = e2->type->toBasetype();

    if (e1type->isintegral())
    {
        assert(e2type->isintegral());
        LLValue* one = llvm::ConstantInt::get(val->getType(), 1, !e2type->isunsigned());
        if (op == TOKplusplus) {
            post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
        }
        else if (op == TOKminusminus) {
            post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
        }
    }
    else if (e1type->ty == Tpointer)
    {
        assert(e2type->isintegral());
        LLConstant* minusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)-1,true);
        LLConstant* plusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)1,false);
        LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone;
        post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb());
    }
    else if (e1type->isfloating())
    {
        assert(e2type->isfloating());
        LLValue* one = DtoConstFP(e1type, 1.0);
        if (op == TOKplusplus) {
            post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
        }
        else if (op == TOKminusminus) {
            post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
        }
    }
    else
    assert(post);

    DtoStore(post,l->getLVal());

    return new DImValue(type,val);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NewExp::toElem(IRState* p)
{
    Logger::print("NewExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(newtype);
    Type* ntype = newtype->toBasetype();

    // new class
    if (ntype->ty == Tclass) {
        Logger::println("new class");
        return DtoNewClass(loc, (TypeClass*)ntype, this);
    }
    // new dynamic array
    else if (ntype->ty == Tarray)
    {
        Logger::println("new dynamic array: %s", newtype->toChars());
        // get dim
        assert(arguments);
        assert(arguments->dim >= 1);
        if (arguments->dim == 1)
        {
            DValue* sz = ((Expression*)arguments->data[0])->toElem(p);
            // allocate & init
            return DtoNewDynArray(loc, newtype, sz, true);
        }
        else
        {
            size_t ndims = arguments->dim;
            std::vector<DValue*> dims(ndims);
            for (size_t i=0; i<ndims; ++i)
                dims[i] = ((Expression*)arguments->data[i])->toElem(p);
            return DtoNewMulDimDynArray(loc, newtype, &dims[0], ndims, true);
        }
    }
    // new static array
    else if (ntype->ty == Tsarray)
    {
        assert(0);
    }
    // new struct
    else if (ntype->ty == Tstruct)
    {
        Logger::println("new struct on heap: %s\n", newtype->toChars());
        // allocate
        LLValue* mem = DtoNew(newtype);
        // init
        TypeStruct* ts = (TypeStruct*)ntype;
        if (ts->isZeroInit()) {
            DtoAggrZeroInit(mem);
        }
        else {
            assert(ts->sym);
            ts->sym->codegen(Type::sir);
            DtoAggrCopy(mem, ts->sym->ir.irStruct->getInitSymbol());
        }
        return new DImValue(type, mem);
    }
    // new basic type
    else
    {
        // allocate
        LLValue* mem = DtoNew(newtype);
        DVarValue tmpvar(newtype, mem);

        // default initialize
        // static arrays never appear here, so using the defaultInit is ok!
        Expression* exp = newtype->defaultInit(loc);
        DValue* iv = exp->toElem(gIR);
        DtoAssign(loc, &tmpvar, iv);

        // return as pointer-to
        return new DImValue(type, mem);
    }

    assert(0);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DeleteExp::toElem(IRState* p)
{
    Logger::print("DeleteExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* dval = e1->toElem(p);
    Type* et = e1->type->toBasetype();

    // simple pointer
    if (et->ty == Tpointer)
    {
        LLValue* rval = dval->getRVal();
        DtoDeleteMemory(rval);
        if (dval->isVar())
            DtoStore(llvm::Constant::getNullValue(rval->getType()), dval->getLVal());
    }
    // class
    else if (et->ty == Tclass)
    {
        bool onstack = false;
        TypeClass* tc = (TypeClass*)et;
        if (tc->sym->isInterfaceDeclaration())
        {
            DtoDeleteInterface(dval->getRVal());
            onstack = true;
        }
        else if (DVarValue* vv = dval->isVar()) {
            if (vv->var && vv->var->onstack) {
                DtoFinalizeClass(dval->getRVal());
                onstack = true;
            }
        }
        if (!onstack) {
            LLValue* rval = dval->getRVal();
            DtoDeleteClass(rval);
        }
        if (dval->isVar()) {
            LLValue* lval = dval->getLVal();
            DtoStore(llvm::Constant::getNullValue(lval->getType()->getContainedType(0)), lval);
        }
    }
    // dyn array
    else if (et->ty == Tarray)
    {
        DtoDeleteArray(dval);
        if (dval->isLVal())
            DtoSetArrayToNull(dval->getLVal());
    }
    // unknown/invalid
    else
    {
        assert(0 && "invalid delete");
    }

    // no value to return
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ArrayLengthExp::toElem(IRState* p)
{
    Logger::print("ArrayLengthExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);
    return new DImValue(type, DtoArrayLen(u));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AssertExp::toElem(IRState* p)
{
    Logger::print("AssertExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    if(!global.params.useAssert)
        return NULL;

    // condition
    DValue* cond;
    Type* condty;

    // special case for dmd generated assert(this); when not in -release mode
    if (e1->op == TOKthis && ((ThisExp*)e1)->var == NULL)
    {
        LLValue* thisarg = p->func()->thisArg;
        assert(thisarg && "null thisarg, but we're in assert(this) exp;");
        LLValue* thisptr = DtoLoad(p->func()->thisArg);
        condty = e1->type->toBasetype();
        cond = new DImValue(condty, thisptr);
    }
    else
    {
        cond = e1->toElem(p);
        condty = e1->type->toBasetype();
    }

    InvariantDeclaration* invdecl;

    // class invariants
    if(
        global.params.useInvariants && 
        condty->ty == Tclass &&
        !((TypeClass*)condty)->sym->isInterfaceDeclaration())
    {
        Logger::print("calling class invariant");
        llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_invariant");
        LLValue* arg = DtoBitCast(cond->getRVal(), fn->getFunctionType()->getParamType(0));
        gIR->CreateCallOrInvoke(fn, arg);
    }
    // struct invariants
    else if(
        global.params.useInvariants && 
        condty->ty == Tpointer && condty->nextOf()->ty == Tstruct &&
        (invdecl = ((TypeStruct*)condty->nextOf())->sym->inv) != NULL)
    {
        Logger::print("calling struct invariant");
        DFuncValue invfunc(invdecl, invdecl->ir.irFunc->func, cond->getRVal());
        DtoCallFunction(loc, NULL, &invfunc, NULL);
    }
    else
    {
        // create basic blocks
        llvm::BasicBlock* oldend = p->scopeend();
        llvm::BasicBlock* assertbb = llvm::BasicBlock::Create("assert", p->topfunc(), oldend);
        llvm::BasicBlock* endbb = llvm::BasicBlock::Create("noassert", p->topfunc(), oldend);

        // test condition
        LLValue* condval = DtoCast(loc, cond, Type::tbool)->getRVal();

        // branch
        llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());

        // call assert runtime functions
        p->scope() = IRScope(assertbb,endbb);
        DtoAssert(p->func()->decl->getModule(), loc, msg ? msg->toElem(p) : NULL);

        // rewrite the scope
        p->scope() = IRScope(endbb,oldend);
    }

    // no meaningful return value
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NotExp::toElem(IRState* p)
{
    Logger::print("NotExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);

    LLValue* b = DtoCast(loc, u, Type::tbool)->getRVal();

    LLConstant* zero = DtoConstBool(false);
    b = p->ir->CreateICmpEQ(b,zero);

    return new DImValue(type, b);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AndAndExp::toElem(IRState* p)
{
    Logger::print("AndAndExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);

    llvm::BasicBlock* oldend = p->scopeend();
    llvm::BasicBlock* andand = llvm::BasicBlock::Create("andand", gIR->topfunc(), oldend);
    llvm::BasicBlock* andandend = llvm::BasicBlock::Create("andandend", gIR->topfunc(), oldend);

    LLValue* ubool = DtoCast(loc, u, Type::tbool)->getRVal();

    llvm::BasicBlock* oldblock = p->scopebb();
    llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb());

    p->scope() = IRScope(andand, andandend);
    DValue* v = e2->toElem(p);

    LLValue* vbool = 0;
    if (!v->isFunc() && v->getType() != Type::tvoid)
    {
        vbool = DtoCast(loc, v, Type::tbool)->getRVal();
    }

    llvm::BasicBlock* newblock = p->scopebb();
    llvm::BranchInst::Create(andandend,p->scopebb());
    p->scope() = IRScope(andandend, oldend);

    LLValue* resval = 0;
    if (ubool == vbool || !vbool) {
        // No need to create a PHI node.
        resval = ubool;
    } else {
        llvm::PHINode* phi = p->ir->CreatePHI(LLType::Int1Ty, "andandval");
        // If we jumped over evaluation of the right-hand side,
        // the result is false. Otherwise it's the value of the right-hand side.
        phi->addIncoming(LLConstantInt::getFalse(), oldblock);
        phi->addIncoming(vbool, newblock);
        resval = phi;
    }

    return new DImValue(type, resval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* OrOrExp::toElem(IRState* p)
{
    Logger::print("OrOrExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);

    llvm::BasicBlock* oldend = p->scopeend();
    llvm::BasicBlock* oror = llvm::BasicBlock::Create("oror", gIR->topfunc(), oldend);
    llvm::BasicBlock* ororend = llvm::BasicBlock::Create("ororend", gIR->topfunc(), oldend);

    LLValue* ubool = DtoCast(loc, u, Type::tbool)->getRVal();

    llvm::BasicBlock* oldblock = p->scopebb();
    llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());

    p->scope() = IRScope(oror, ororend);
    DValue* v = e2->toElem(p);

    LLValue* vbool = 0;
    if (!v->isFunc() && v->getType() != Type::tvoid)
    {
        vbool = DtoCast(loc, v, Type::tbool)->getRVal();
    }

    llvm::BasicBlock* newblock = p->scopebb();
    llvm::BranchInst::Create(ororend,p->scopebb());
    p->scope() = IRScope(ororend, oldend);

    LLValue* resval = 0;
    if (ubool == vbool || !vbool) {
        // No need to create a PHI node.
        resval = ubool;
    } else {
        llvm::PHINode* phi = p->ir->CreatePHI(LLType::Int1Ty, "ororval");
        // If we jumped over evaluation of the right-hand side,
        // the result is true. Otherwise, it's the value of the right-hand side.
        phi->addIncoming(LLConstantInt::getTrue(), oldblock);
        phi->addIncoming(vbool, newblock);
        resval = phi;
    }

    return new DImValue(type, resval);
}

//////////////////////////////////////////////////////////////////////////////////////////

#define BinBitExp(X,Y) \
DValue* X##Exp::toElem(IRState* p) \
{ \
    Logger::print("%sExp::toElem: %s @ %s\n", #X, toChars(), type->toChars()); \
    LOG_SCOPE; \
    DValue* u = e1->toElem(p); \
    DValue* v = e2->toElem(p); \
    errorOnIllegalArrayOp(this, e1, e2); \
    LLValue* x = llvm::BinaryOperator::Create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \
    return new DImValue(type, x); \
}

BinBitExp(And,And);
BinBitExp(Or,Or);
BinBitExp(Xor,Xor);
BinBitExp(Shl,Shl);
BinBitExp(Ushr,LShr);

DValue* ShrExp::toElem(IRState* p)
{
    Logger::print("ShrExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);
    LLValue* x;
    if (e1->type->isunsigned())
        x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp");
    else
        x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp");
    return new DImValue(type, x);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* HaltExp::toElem(IRState* p)
{
    Logger::print("HaltExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    // FIXME: DMD inserts a trap here... we probably should as well !?!

#if 1
    DtoAssert(p->func()->decl->getModule(), loc, NULL);
#else
    // call the new (?) trap intrinsic
    p->ir->CreateCall(GET_INTRINSIC_DECL(trap),"");
    new llvm::UnreachableInst(p->scopebb());
#endif

    // this terminated the basicblock, start a new one
    // this is sensible, since someone might goto behind the assert
    // and prevents compiler errors if a terminator follows the assert
    llvm::BasicBlock* oldend = gIR->scopeend();
    llvm::BasicBlock* bb = llvm::BasicBlock::Create("afterhalt", p->topfunc(), oldend);
    p->scope() = IRScope(bb,oldend);

    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DelegateExp::toElem(IRState* p)
{
    Logger::print("DelegateExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    if(func->isStatic())
        error("can't take delegate of static function %s, it does not require a context ptr", func->toChars());

    const LLPointerType* int8ptrty = getPtrToType(LLType::Int8Ty);

    assert(type->toBasetype()->ty == Tdelegate);
    const LLType* dgty = DtoType(type);

    DValue* u = e1->toElem(p);
    LLValue* uval;
    if (DFuncValue* f = u->isFunc()) {
        assert(f->func);
        LLValue* contextptr = DtoNestedContext(loc, f->func);
        uval = DtoBitCast(contextptr, getVoidPtrType());
    }
    else {
        DValue* src = u;
        if (ClassDeclaration* cd = u->getType()->isClassHandle())
        {
            Logger::println("context type is class handle");
            if (cd->isInterfaceDeclaration())
            {
                Logger::println("context type is interface");
                src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type);
            }
        }
        uval = src->getRVal();
    }

    if (Logger::enabled())
        Logger::cout() << "context = " << *uval << '\n';

    LLValue* castcontext = DtoBitCast(uval, int8ptrty);

    Logger::println("func: '%s'", func->toPrettyChars());

    LLValue* castfptr;
    if (func->isVirtual() && !func->isFinal())
        castfptr = DtoVirtualFunctionPointer(u, func);
    else if (func->isAbstract())
        assert(0 && "TODO delegate to abstract method");
    else if (func->toParent()->isInterfaceDeclaration())
        assert(0 && "TODO delegate to interface method");
    else
    {
        func->codegen(Type::sir);
        castfptr = func->ir.irFunc->func;
    }

    castfptr = DtoBitCast(castfptr, dgty->getContainedType(1));

    return new DImValue(type, DtoAggrPair(castcontext, castfptr, ".dg"));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* IdentityExp::toElem(IRState* p)
{
    Logger::print("IdentityExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);

    Type* t1 = e1->type->toBasetype();

    // handle dynarray specially
    if (t1->ty == Tarray)
        return new DImValue(type, DtoDynArrayIs(op,u,v));
    // also structs
    else if (t1->ty == Tstruct)
        return new DImValue(type, DtoStructEquals(op,u,v));

    // FIXME this stuff isn't pretty
    LLValue* l = u->getRVal();
    LLValue* r = v->getRVal();
    LLValue* eval = 0;

    if (t1->ty == Tdelegate) {
        if (v->isNull()) {
            r = NULL;
        }
        else {
            assert(l->getType() == r->getType());
        }
        eval = DtoDelegateEquals(op,l,r);
    }
    else if (t1->isfloating())
    {
        eval = (op == TOKidentity)
        ?   p->ir->CreateFCmpOEQ(l,r,"tmp")
        :   p->ir->CreateFCmpONE(l,r,"tmp");
    }
    else if (t1->ty == Tpointer || t1->ty == Tclass)
    {
        if (l->getType() != r->getType()) {
            if (v->isNull())
                r = llvm::ConstantPointerNull::get(isaPointer(l->getType()));
            else
                r = DtoBitCast(r, l->getType());
        }
        eval = (op == TOKidentity)
        ?   p->ir->CreateICmpEQ(l,r,"tmp")
        :   p->ir->CreateICmpNE(l,r,"tmp");
    }
    else {
        assert(l->getType() == r->getType());
        eval = (op == TOKidentity)
        ?   p->ir->CreateICmpEQ(l,r,"tmp")
        :   p->ir->CreateICmpNE(l,r,"tmp");
    }
    return new DImValue(type, eval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CommaExp::toElem(IRState* p)
{
    Logger::print("CommaExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);
    assert(e2->type == type);
    return v;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CondExp::toElem(IRState* p)
{
    Logger::print("CondExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* dtype = type->toBasetype();

    DValue* dvv;
    // voids returns will need no storage
    if (dtype->ty != Tvoid) {
        // allocate a temporary for the final result. failed to come up with a better way :/
        LLValue* resval = DtoAlloca(dtype,"condtmp");
        dvv = new DVarValue(type, resval);
    } else {
        dvv = new DConstValue(type, getNullValue(DtoTypeNotVoid(dtype)));
    }

    llvm::BasicBlock* oldend = p->scopeend();
    llvm::BasicBlock* condtrue = llvm::BasicBlock::Create("condtrue", gIR->topfunc(), oldend);
    llvm::BasicBlock* condfalse = llvm::BasicBlock::Create("condfalse", gIR->topfunc(), oldend);
    llvm::BasicBlock* condend = llvm::BasicBlock::Create("condend", gIR->topfunc(), oldend);

    DValue* c = econd->toElem(p);
    LLValue* cond_val = DtoCast(loc, c, Type::tbool)->getRVal();
    llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());

    p->scope() = IRScope(condtrue, condfalse);
    DValue* u = e1->toElem(p);
    if (dtype->ty != Tvoid)
        DtoAssign(loc, dvv, u);
    llvm::BranchInst::Create(condend,p->scopebb());

    p->scope() = IRScope(condfalse, condend);
    DValue* v = e2->toElem(p);
    if (dtype->ty != Tvoid)
        DtoAssign(loc, dvv, v);
    llvm::BranchInst::Create(condend,p->scopebb());

    p->scope() = IRScope(condend, oldend);
    return dvv;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ComExp::toElem(IRState* p)
{
    Logger::print("ComExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);

    LLValue* value = u->getRVal();
    LLValue* minusone = llvm::ConstantInt::get(value->getType(), (uint64_t)-1, true);
    value = llvm::BinaryOperator::Create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb());

    return new DImValue(type, value);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NegExp::toElem(IRState* p)
{
    Logger::print("NegExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);

    if (type->iscomplex()) {
        return DtoComplexNeg(loc, type, l);
    }

    LLValue* val = l->getRVal();

    val = gIR->ir->CreateNeg(val,"negval");
    return new DImValue(type, val);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CatExp::toElem(IRState* p)
{
    Logger::print("CatExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* t = type->toBasetype();

    bool arrNarr = e1->type->toBasetype() == e2->type->toBasetype();

    // array ~ array
    if (arrNarr)
    {
        return DtoCatArrays(type, e1, e2);
    }
    // array ~ element
    // element ~ array
    else
    {
        return DtoCatArrayElement(type, e1, e2);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CatAssignExp::toElem(IRState* p)
{
    Logger::print("CatAssignExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);

    Type* e1type = e1->type->toBasetype();
    Type* elemtype = e1type->nextOf()->toBasetype();
    Type* e2type = e2->type->toBasetype();

    if (e2type == elemtype) {
        DSliceValue* slice = DtoCatAssignElement(l,e2);
        DtoAssign(loc, l, slice);
    }
    else if (e1type == e2type) {
        DSliceValue* slice = DtoCatAssignArray(l,e2);
        DtoAssign(loc, l, slice);
    }
    else
        assert(0 && "only one element at a time right now");

    return l;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* FuncExp::toElem(IRState* p)
{
    Logger::print("FuncExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(fd);

    if (fd->isNested()) Logger::println("nested");
    Logger::println("kind = %s\n", fd->kind());

    fd->codegen(Type::sir);
    assert(fd->ir.irFunc->func);

    if(fd->tok == TOKdelegate) {
        const LLType* dgty = DtoType(type);

        LLValue* cval;
        IrFunction* irfn = p->func();
        if (irfn->nestedVar)
            cval = irfn->nestedVar;
        else if (irfn->nestArg)
            cval = irfn->nestArg;
        else
            cval = getNullPtr(getVoidPtrType());
        cval = DtoBitCast(cval, dgty->getContainedType(0));

        LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, dgty->getContainedType(1));

        return new DImValue(type, DtoAggrPair(cval, castfptr, ".func"));

    } else if(fd->tok == TOKfunction) {
        return new DImValue(type, fd->ir.irFunc->func);
    }

    assert(0 && "fd->tok must be TOKfunction or TOKdelegate");
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* FuncExp::toConstElem(IRState* p)
{
    Logger::print("FuncExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(fd);
    assert(fd->tok == TOKfunction);

    fd->codegen(Type::sir);
    assert(fd->ir.irFunc->func);

    return fd->ir.irFunc->func;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ArrayLiteralExp::toElem(IRState* p)
{
    Logger::print("ArrayLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // D types
    Type* arrayType = type->toBasetype();
    Type* elemType = arrayType->nextOf()->toBasetype();

    // is dynamic ?
    bool dyn = (arrayType->ty == Tarray);
    // length
    size_t len = elements->dim;

    // llvm target type
    const LLType* llType = DtoType(arrayType);
    if (Logger::enabled())
        Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";

    // llvm storage type
    const LLType* llElemType = DtoTypeNotVoid(elemType);
    const LLType* llStoType = LLArrayType::get(llElemType, len);
    if (Logger::enabled())
        Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";

    // don't allocate storage for zero length dynamic array literals
    if (dyn && len == 0)
    {
        // dmd seems to just make them null...
        return new DSliceValue(type, DtoConstSize_t(0), getNullPtr(getPtrToType(llElemType)));
    }

    // dst pointer
    LLValue* dstMem;
    DSliceValue* dynSlice = NULL;
    if(dyn)
    {
        dynSlice = DtoNewDynArray(loc, arrayType, new DConstValue(Type::tsize_t, DtoConstSize_t(len)), false);
        dstMem = dynSlice->ptr;
    }
    else
        dstMem = DtoRawAlloca(llStoType, 0, "arrayliteral");

    // store elements
    for (size_t i=0; i<len; ++i)
    {
        Expression* expr = (Expression*)elements->data[i];
        LLValue* elemAddr;
        if(dyn)
            elemAddr = DtoGEPi1(dstMem, i, "tmp", p->scopebb());
        else
            elemAddr = DtoGEPi(dstMem,0,i,"tmp",p->scopebb());

        // emulate assignment
        DVarValue* vv = new DVarValue(expr->type, elemAddr);
        DValue* e = expr->toElem(p);
        DtoAssign(loc, vv, e);
    }

    // return storage directly ?
    if (!dyn)
        return new DImValue(type, dstMem);

    // return slice
    return dynSlice;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* ArrayLiteralExp::toConstElem(IRState* p)
{
    Logger::print("ArrayLiteralExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // extract D types
    Type* bt = type->toBasetype();
    Type* elemt = bt->nextOf();

    // build llvm array type
    const LLArrayType* arrtype = LLArrayType::get(DtoType(elemt), elements->dim);

    // dynamic arrays can occur here as well ...
    bool dyn = (bt->ty == Tarray);

    // build the initializer
    std::vector<LLConstant*> vals(elements->dim, NULL);
    for (unsigned i=0; i<elements->dim; ++i)
    {
        Expression* expr = (Expression*)elements->data[i];
        vals[i] = expr->toConstElem(p);
    }

    // build the constant array initializer
    LLConstant* initval = llvm::ConstantArray::get(arrtype, vals);

    // if static array, we're done
    if (!dyn)
        return initval;

    // for dynamic arrays we need to put the initializer in a global, and build a constant dynamic array reference with the .ptr field pointing into this global
    // Important: don't make the global constant, since this const initializer might
    // be used as an initializer for a static T[] - where modifying contents is allowed.
    LLConstant* globalstore = new LLGlobalVariable(arrtype, false, LLGlobalValue::InternalLinkage, initval, ".dynarrayStorage", p->module);
    LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
    LLConstant* globalstorePtr = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, 2);

    return DtoConstSlice(DtoConstSize_t(elements->dim), globalstorePtr);
}

//////////////////////////////////////////////////////////////////////////////////////////

// building a struct literal is pretty much the same as building a default initializer.

extern size_t add_zeros(std::vector<llvm::Value*>& values, size_t diff);
extern LLConstant* get_default_initializer(VarDeclaration* vd, Initializer* init);

DValue* StructLiteralExp::toElem(IRState* p)
{
    Logger::print("StructLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // make sure the struct is fully resolved
    sd->codegen(Type::sir);

    // final list of values to put in the struct
    std::vector<LLValue*> initvalues;

    // offset tracker
    size_t offset = 0;

    // align(1) struct S { ... }
    bool packed = sd->type->alignsize() == 1;

    // ready elements data
    assert(elements && "struct literal has null elements");
    size_t nexprs = elements->dim;;
    Expression** exprs = (Expression**)elements->data;

    // go through fields
    ArrayIter<VarDeclaration> it(sd->fields);
    for (; !it.done(); it.next())
    {
        VarDeclaration* vd = it.get();

        if (vd->offset < offset)
        {
            IF_LOG Logger::println("skipping field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);
            continue;
        }

        IF_LOG Logger::println("using field: %s %s (+%u)", vd->type->toChars(), vd->toChars(), vd->offset);

        // get next aligned offset for this field
        size_t alignedoffset = offset;
        if (!packed)
        {
            alignedoffset = realignOffset(alignedoffset, vd->type);
        }

        // insert explicit padding?
        if (alignedoffset < vd->offset)
        {
            add_zeros(initvalues, vd->offset - alignedoffset);
        }

        // add initializer
        Expression* expr = (it.index < nexprs) ? exprs[it.index] : NULL;
        IF_LOG Logger::println("expr: %p", expr);
        if (expr)
        {
            IF_LOG Logger::println("expr = %s", it.index, expr->toChars());
            LLValue* v = DtoExprValue(vd->type, expr);
            initvalues.push_back(v);
        }
        else
        {
            IF_LOG Logger::println("using default initializer");
            initvalues.push_back(get_default_initializer(vd, NULL));
        }

        // advance offset to right past this field
        offset = vd->offset + vd->type->size();
    }

    // tail padding?
    if (offset < sd->structsize)
    {
        add_zeros(initvalues, sd->structsize - offset);
    }

    // build type
    std::vector<const LLType*> valuetypes;

    size_t n = initvalues.size();
    valuetypes.reserve(n);

    for (size_t i = 0; i < n; i++)
    {
        valuetypes.push_back(initvalues[i]->getType());
    }

    const LLType* st = llvm::StructType::get(valuetypes, packed);

    // alloca a stack slot
    LLValue* mem = DtoRawAlloca(st, 0, ".structliteral");

    // fill in values
    for (size_t i = 0; i < n; i++)
    {
        LLValue* addr = DtoGEPi(mem, 0, i);
        p->ir->CreateStore(initvalues[i], addr);
    }

    // cast to default struct type
    mem = DtoBitCast(mem, DtoType(sd->type->pointerTo()));

    // return as a var
    return new DVarValue(type, mem);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* StructLiteralExp::toConstElem(IRState* p)
{
    Logger::print("StructLiteralExp::toConstElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // make sure the struct is resolved
    sd->codegen(Type::sir);

    // get inits
    std::vector<LLValue*> inits(sd->fields.dim, NULL);

    size_t nexprs = elements->dim;;
    Expression** exprs = (Expression**)elements->data;

    for (size_t i = 0; i < nexprs; i++)
        if (exprs[i])
            inits[i] = exprs[i]->toConstElem(p);

    // vector of values to build aggregate from
    std::vector<LLValue*> values = DtoStructLiteralValues(sd, inits);

    // we know those values are constants.. cast them
    std::vector<LLConstant*> constvals(values.size(), NULL);
    for (size_t i = 0; i < values.size(); ++i)
        constvals[i] = llvm::cast<LLConstant>(values[i]);

    // return constant struct
    return LLConstantStruct::get(constvals, sd->ir.irStruct->packed);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* InExp::toElem(IRState* p)
{
    Logger::print("InExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* key = e1->toElem(p);
    DValue* aa = e2->toElem(p);

    return DtoAAIn(loc, type, aa, key);
}

DValue* RemoveExp::toElem(IRState* p)
{
    Logger::print("RemoveExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    DValue* aa = e1->toElem(p);
    DValue* key = e2->toElem(p);

    DtoAARemove(loc, aa, key);

    return NULL; // does not produce anything useful
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AssocArrayLiteralExp::toElem(IRState* p)
{
    Logger::print("AssocArrayLiteralExp::toElem: %s @ %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(keys);
    assert(values);
    assert(keys->dim == values->dim);

    Type* aatype = type->toBasetype();
    Type* vtype = aatype->nextOf();

    // it should be possible to avoid the temporary in some cases
    LLValue* tmp = DtoAlloca(type,"aaliteral");
    DValue* aa = new DVarValue(type, tmp);
    DtoStore(LLConstant::getNullValue(DtoType(type)), tmp);

    const size_t n = keys->dim;
    for (size_t i=0; i<n; ++i)
    {
        Expression* ekey = (Expression*)keys->data[i];
        Expression* eval = (Expression*)values->data[i];

        Logger::println("(%u) aa[%s] = %s", i, ekey->toChars(), eval->toChars());

        // index
        DValue* key = ekey->toElem(p);
        DValue* mem = DtoAAIndex(loc, vtype, aa, key, true);

        // store
        DValue* val = eval->toElem(p);
        DtoAssign(loc, mem, val);
    }

    return aa;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* GEPExp::toElem(IRState* p)
{
    // this should be good enough for now!
    DValue* val = e1->toElem(p);
    assert(val->isLVal());
    LLValue* v = DtoGEPi(val->getLVal(), 0, index);
    return new DVarValue(type, DtoBitCast(v, getPtrToType(DtoType(type))));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* BoolExp::toElem(IRState* p)
{
    return new DImValue(type, DtoCast(loc, e1->toElem(p), Type::tbool)->getRVal());
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DotTypeExp::toElem(IRState* p)
{
    Type* t = sym->getType();
    assert(t);
    return e1->toElem(p);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* TypeExp::toElem(IRState *p)
{
    error("type %s is not an expression", toChars());
    //TODO: Improve error handling. DMD just returns some value here and hopes
    // some more sensible error messages will be triggered.
    fatal();
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

#define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; }
STUB(Expression);
STUB(TypeDotIdExp);
STUB(ScopeExp);
STUB(TupleExp);

#if DMDV2
STUB(SymbolExp);
#endif

#define CONSTSTUB(x) LLConstant* x::toConstElem(IRState * p) { \
    error("expression '%s' is not a constant", toChars()); \
    fatal(); \
    return NULL; \
}
CONSTSTUB(Expression);
CONSTSTUB(GEPExp);
CONSTSTUB(SliceExp);
CONSTSTUB(IndexExp);
CONSTSTUB(AssocArrayLiteralExp);

//////////////////////////////////////////////////////////////////////////////////////////

void obj_includelib(const char* lib)
{
    size_t n = strlen(lib)+3;
    char *arg = (char *)mem.malloc(n);
    strcpy(arg, "-l");
    strncat(arg, lib, n);
    global.params.linkswitches->push(arg);
}

void backend_init()
{
    // LLVM_D_InitRuntime is done in Module::genLLVMModule
    // since it requires the semantic pass to be done
}

void backend_term()
{
    LLVM_D_FreeRuntime();
    llvm::llvm_shutdown();
}