view dmd2/arrayop.c @ 1047:6bb04dbee21f

Some calling convention work for x86-64: - Implement x86-64 extern(C), hopefully correctly. - Tried to be a bit smarter about extern(D) while I was there. Interestingly, this code seems to be generating more efficient code than gcc and llvm-gcc in some edge cases, like returning a `{ [7 x i8] }` loaded from a stack slot from an extern(C) function. (gcc generates 7 1-byte loads, while this code generates a 4-byte, a 2-byte and a 1-byte load) I also added some changes to make sure structs being returned from functions or passed in as parameters are stored in memory where the rest of the backend seems to expect them to be. These should be removed when support for first-class aggregates improves.
author Frits van Bommel <fvbommel wxs.nl>
date Fri, 06 Mar 2009 16:00:47 +0100
parents f04dde6e882c
children 638d16625da2
line wrap: on
line source


// Copyright (c) 1999-2008 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.

#include <stdio.h>
#include <string.h>
#include <assert.h>

#if _WIN32 || IN_GCC  || IN_LLVM
#include "mem.h"
#else
#include "../root/mem.h"
#endif

#include "stringtable.h"

#include "expression.h"
#include "statement.h"
#include "mtype.h"
#include "declaration.h"
#include "scope.h"
#include "id.h"
#include "module.h"
#include "init.h"


/***********************************
 * Construct the array operation expression.
 */

Expression *BinExp::arrayOp(Scope *sc)
{
    Expressions *arguments = new Expressions();

    /* The expression to generate an array operation for is mangled
     * into a name to use as the array operation function name.
     * Mangle in the operands and operators in RPN order, and type.
     */
    OutBuffer buf;
    buf.writestring("_array");
    buildArrayIdent(&buf, arguments);
    buf.writeByte('_');

    /* Append deco of array element type
     */
#if DMDV2
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->mutableOf()->deco);
#else
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->deco);
#endif

    size_t namelen = buf.offset;
    buf.writeByte(0);
    char *name = (char *)buf.extractData();

    /* Look up name in hash table
     */
    StringValue *sv = sc->module->arrayfuncs.update(name, namelen);
    FuncDeclaration *fd = (FuncDeclaration *)sv->ptrvalue;
    if (!fd)
    {
//     /* Some of the array op functions are written as library functions,
//      * presumably to optimize them with special CPU vector instructions.
//      * List those library functions here, in alpha order.
//      */
//     static const char *libArrayopFuncs[] =
//     {
//         "_arrayExpSliceAddass_a",
//         "_arrayExpSliceAddass_d",       // T[]+=T
//         "_arrayExpSliceAddass_f",       // T[]+=T
//         "_arrayExpSliceAddass_g",
//         "_arrayExpSliceAddass_h",
//         "_arrayExpSliceAddass_i",
//         "_arrayExpSliceAddass_k",
//         "_arrayExpSliceAddass_s",
//         "_arrayExpSliceAddass_t",
//         "_arrayExpSliceAddass_u",
//         "_arrayExpSliceAddass_w",
// 
//         "_arrayExpSliceDivass_d",       // T[]/=T
//         "_arrayExpSliceDivass_f",       // T[]/=T
// 
//         "_arrayExpSliceMinSliceAssign_a",
//         "_arrayExpSliceMinSliceAssign_d",   // T[]=T-T[]
//         "_arrayExpSliceMinSliceAssign_f",   // T[]=T-T[]
//         "_arrayExpSliceMinSliceAssign_g",
//         "_arrayExpSliceMinSliceAssign_h",
//         "_arrayExpSliceMinSliceAssign_i",
//         "_arrayExpSliceMinSliceAssign_k",
//         "_arrayExpSliceMinSliceAssign_s",
//         "_arrayExpSliceMinSliceAssign_t",
//         "_arrayExpSliceMinSliceAssign_u",
//         "_arrayExpSliceMinSliceAssign_w",
// 
//         "_arrayExpSliceMinass_a",
//         "_arrayExpSliceMinass_d",       // T[]-=T
//         "_arrayExpSliceMinass_f",       // T[]-=T
//         "_arrayExpSliceMinass_g",
//         "_arrayExpSliceMinass_h",
//         "_arrayExpSliceMinass_i",
//         "_arrayExpSliceMinass_k",
//         "_arrayExpSliceMinass_s",
//         "_arrayExpSliceMinass_t",
//         "_arrayExpSliceMinass_u",
//         "_arrayExpSliceMinass_w",
// 
//         "_arrayExpSliceMulass_d",       // T[]*=T
//         "_arrayExpSliceMulass_f",       // T[]*=T
//         "_arrayExpSliceMulass_i",
//         "_arrayExpSliceMulass_k",
//         "_arrayExpSliceMulass_s",
//         "_arrayExpSliceMulass_t",
//         "_arrayExpSliceMulass_u",
//         "_arrayExpSliceMulass_w",
// 
//         "_arraySliceExpAddSliceAssign_a",
//         "_arraySliceExpAddSliceAssign_d",   // T[]=T[]+T
//         "_arraySliceExpAddSliceAssign_f",   // T[]=T[]+T
//         "_arraySliceExpAddSliceAssign_g",
//         "_arraySliceExpAddSliceAssign_h",
//         "_arraySliceExpAddSliceAssign_i",
//         "_arraySliceExpAddSliceAssign_k",
//         "_arraySliceExpAddSliceAssign_s",
//         "_arraySliceExpAddSliceAssign_t",
//         "_arraySliceExpAddSliceAssign_u",
//         "_arraySliceExpAddSliceAssign_w",
// 
//         "_arraySliceExpDivSliceAssign_d",   // T[]=T[]/T
//         "_arraySliceExpDivSliceAssign_f",   // T[]=T[]/T
// 
//         "_arraySliceExpMinSliceAssign_a",
//         "_arraySliceExpMinSliceAssign_d",   // T[]=T[]-T
//         "_arraySliceExpMinSliceAssign_f",   // T[]=T[]-T
//         "_arraySliceExpMinSliceAssign_g",
//         "_arraySliceExpMinSliceAssign_h",
//         "_arraySliceExpMinSliceAssign_i",
//         "_arraySliceExpMinSliceAssign_k",
//         "_arraySliceExpMinSliceAssign_s",
//         "_arraySliceExpMinSliceAssign_t",
//         "_arraySliceExpMinSliceAssign_u",
//         "_arraySliceExpMinSliceAssign_w",
// 
//         "_arraySliceExpMulSliceAddass_d",   // T[] += T[]*T
//         "_arraySliceExpMulSliceAddass_f",
//         "_arraySliceExpMulSliceAddass_r",
// 
//         "_arraySliceExpMulSliceAssign_d",   // T[]=T[]*T
//         "_arraySliceExpMulSliceAssign_f",   // T[]=T[]*T
//         "_arraySliceExpMulSliceAssign_i",
//         "_arraySliceExpMulSliceAssign_k",
//         "_arraySliceExpMulSliceAssign_s",
//         "_arraySliceExpMulSliceAssign_t",
//         "_arraySliceExpMulSliceAssign_u",
//         "_arraySliceExpMulSliceAssign_w",
// 
//         "_arraySliceExpMulSliceMinass_d",   // T[] -= T[]*T
//         "_arraySliceExpMulSliceMinass_f",
//         "_arraySliceExpMulSliceMinass_r",
// 
//         "_arraySliceSliceAddSliceAssign_a",
//         "_arraySliceSliceAddSliceAssign_d", // T[]=T[]+T[]
//         "_arraySliceSliceAddSliceAssign_f", // T[]=T[]+T[]
//         "_arraySliceSliceAddSliceAssign_g",
//         "_arraySliceSliceAddSliceAssign_h",
//         "_arraySliceSliceAddSliceAssign_i",
//         "_arraySliceSliceAddSliceAssign_k",
//         "_arraySliceSliceAddSliceAssign_r", // T[]=T[]+T[]
//         "_arraySliceSliceAddSliceAssign_s",
//         "_arraySliceSliceAddSliceAssign_t",
//         "_arraySliceSliceAddSliceAssign_u",
//         "_arraySliceSliceAddSliceAssign_w",
// 
//         "_arraySliceSliceAddass_a",
//         "_arraySliceSliceAddass_d",     // T[]+=T[]
//         "_arraySliceSliceAddass_f",     // T[]+=T[]
//         "_arraySliceSliceAddass_g",
//         "_arraySliceSliceAddass_h",
//         "_arraySliceSliceAddass_i",
//         "_arraySliceSliceAddass_k",
//         "_arraySliceSliceAddass_s",
//         "_arraySliceSliceAddass_t",
//         "_arraySliceSliceAddass_u",
//         "_arraySliceSliceAddass_w",
// 
//         "_arraySliceSliceMinSliceAssign_a",
//         "_arraySliceSliceMinSliceAssign_d", // T[]=T[]-T[]
//         "_arraySliceSliceMinSliceAssign_f", // T[]=T[]-T[]
//         "_arraySliceSliceMinSliceAssign_g",
//         "_arraySliceSliceMinSliceAssign_h",
//         "_arraySliceSliceMinSliceAssign_i",
//         "_arraySliceSliceMinSliceAssign_k",
//         "_arraySliceSliceMinSliceAssign_r", // T[]=T[]-T[]
//         "_arraySliceSliceMinSliceAssign_s",
//         "_arraySliceSliceMinSliceAssign_t",
//         "_arraySliceSliceMinSliceAssign_u",
//         "_arraySliceSliceMinSliceAssign_w",
// 
//         "_arraySliceSliceMinass_a",
//         "_arraySliceSliceMinass_d",     // T[]-=T[]
//         "_arraySliceSliceMinass_f",     // T[]-=T[]
//         "_arraySliceSliceMinass_g",
//         "_arraySliceSliceMinass_h",
//         "_arraySliceSliceMinass_i",
//         "_arraySliceSliceMinass_k",
//         "_arraySliceSliceMinass_s",
//         "_arraySliceSliceMinass_t",
//         "_arraySliceSliceMinass_u",
//         "_arraySliceSliceMinass_w",
// 
//         "_arraySliceSliceMulSliceAssign_d", // T[]=T[]*T[]
//         "_arraySliceSliceMulSliceAssign_f", // T[]=T[]*T[]
//         "_arraySliceSliceMulSliceAssign_i",
//         "_arraySliceSliceMulSliceAssign_k",
//         "_arraySliceSliceMulSliceAssign_s",
//         "_arraySliceSliceMulSliceAssign_t",
//         "_arraySliceSliceMulSliceAssign_u",
//         "_arraySliceSliceMulSliceAssign_w",
// 
//         "_arraySliceSliceMulass_d",     // T[]*=T[]
//         "_arraySliceSliceMulass_f",     // T[]*=T[]
//         "_arraySliceSliceMulass_i",
//         "_arraySliceSliceMulass_k",
//         "_arraySliceSliceMulass_s",
//         "_arraySliceSliceMulass_t",
//         "_arraySliceSliceMulass_u",
//         "_arraySliceSliceMulass_w",
//     };
// 
//     int i = binary(name, libArrayopFuncs, sizeof(libArrayopFuncs) / sizeof(char *));
//     if (i == -1)
//     {
// #ifdef DEBUG    // Make sure our array is alphabetized
//         for (i = 0; i < sizeof(libArrayopFuncs) / sizeof(char *); i++)
//         {
//         if (strcmp(name, libArrayopFuncs[i]) == 0)
//             assert(0);
//         }
// #endif

        /* Not in library, so generate it.
         * Construct the function body:
         *  foreach (i; 0 .. p.length)    for (size_t i = 0; i < p.length; i++)
         *      loopbody;
         *  return p;
         */

        Arguments *fparams = new Arguments();
        Expression *loopbody = buildArrayLoop(fparams);
        Argument *p = (Argument *)fparams->data[0 /*fparams->dim - 1*/];
#if DMDV1
        // for (size_t i = 0; i < p.length; i++)
        Initializer *init = new ExpInitializer(0, new IntegerExp(0, 0, Type::tsize_t));
        Dsymbol *d = new VarDeclaration(0, Type::tsize_t, Id::p, init);
        Statement *s1 = new ForStatement(0,
        new DeclarationStatement(0, d),
        new CmpExp(TOKlt, 0, new IdentifierExp(0, Id::p), new ArrayLengthExp(0, new IdentifierExp(0, p->ident))),
        new PostExp(TOKplusplus, 0, new IdentifierExp(0, Id::p)),
        new ExpStatement(0, loopbody));
#else
        // foreach (i; 0 .. p.length)
        Statement *s1 = new ForeachRangeStatement(0, TOKforeach,
        new Argument(0, NULL, Id::p, NULL),
        new IntegerExp(0, 0, Type::tint32),
        new ArrayLengthExp(0, new IdentifierExp(0, p->ident)),
        new ExpStatement(0, loopbody));
#endif
        Statement *s2 = new ReturnStatement(0, new IdentifierExp(0, p->ident));
        //printf("s2: %s\n", s2->toChars());
        Statement *fbody = new CompoundStatement(0, s1, s2);

        /* Construct the function
         */
        TypeFunction *ftype = new TypeFunction(fparams, type, 0, LINKc);
        //printf("ftype: %s\n", ftype->toChars());
        fd = new FuncDeclaration(0, 0, Lexer::idPool(name), STCundefined, ftype);
        fd->fbody = fbody;
        fd->protection = PROTprotected;
        fd->linkage = LINKd;

        // special attention for array ops
        fd->isArrayOp = true;

        sc->module->members->push(fd);

        sc = sc->push();
        sc->parent = sc->module;
        sc->stc = 0;
        sc->linkage = LINKd;
        fd->semantic(sc);
        sc->pop();
//     }
//     else
//     {   /* In library, refer to it.
//          */
//         // FIXME
//         fd = FuncDeclaration::genCfunc(NULL, type, name);
//     }
    sv->ptrvalue = fd;  // cache symbol in hash table
    }

    /* Call the function fd(arguments)
     */
    Expression *ec = new VarExp(0, fd);
    Expression *e = new CallExp(loc, ec, arguments);
    e->type = type;
    return e;
}

/******************************************
 * Construct the identifier for the array operation function,
 * and build the argument list to pass to it.
 */

void Expression::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    buf->writestring("Exp");
    arguments->shift(this);
}

void SliceExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    buf->writestring("Slice");
    arguments->shift(this);
}

void AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    /* Evaluate assign expressions right to left
     */
    e2->buildArrayIdent(buf, arguments);
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Assign");
}

#define X(Str) \
void Str##AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments) \
{							\
    /* Evaluate assign expressions right to left	\
     */							\
    e2->buildArrayIdent(buf, arguments);		\
    e1->buildArrayIdent(buf, arguments);		\
    buf->writestring(#Str);				\
    buf->writestring("ass");				\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

void NegExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Neg");
}

void ComExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Com");
}

#define X(Str) \
void Str##Exp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)	\
{									\
    /* Evaluate assign expressions left to right			\
     */									\
    e1->buildArrayIdent(buf, arguments);				\
    e2->buildArrayIdent(buf, arguments);				\
    buf->writestring(#Str);						\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

/******************************************
 * Construct the inner loop for the array operation function,
 * and build the parameter list.
 */

Expression *Expression::buildArrayLoop(Arguments *fparams)
{
    Identifier *id = Identifier::generateId("c", fparams->dim);
    Argument *param = new Argument(0, type, id, NULL);
    fparams->shift(param);
    Expression *e = new IdentifierExp(0, id);
    return e;
}

Expression *SliceExp::buildArrayLoop(Arguments *fparams)
{
    Identifier *id = Identifier::generateId("p", fparams->dim);
    Argument *param = new Argument(STCconst, type, id, NULL);
    fparams->shift(param);
    Expression *e = new IdentifierExp(0, id);
    Expressions *arguments = new Expressions();
    Expression *index = new IdentifierExp(0, Id::p);
    arguments->push(index);
    e = new ArrayExp(0, e, arguments);
    return e;
}

Expression *AssignExp::buildArrayLoop(Arguments *fparams)
{
    /* Evaluate assign expressions right to left
     */
    Expression *ex2 = e2->buildArrayLoop(fparams);
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Argument *param = (Argument *)fparams->data[0];
    param->storageClass = 0;
    Expression *e = new AssignExp(0, ex1, ex2);
    return e;
}

#define X(Str) \
Expression *Str##AssignExp::buildArrayLoop(Arguments *fparams)	\
{								\
    /* Evaluate assign expressions right to left		\
     */								\
    Expression *ex2 = e2->buildArrayLoop(fparams);		\
    Expression *ex1 = e1->buildArrayLoop(fparams);		\
    Argument *param = (Argument *)fparams->data[0];		\
    param->storageClass = 0;					\
    Expression *e = new Str##AssignExp(0, ex1, ex2);		\
    return e;							\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

Expression *NegExp::buildArrayLoop(Arguments *fparams)
{
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Expression *e = new NegExp(0, ex1);
    return e;
}

Expression *ComExp::buildArrayLoop(Arguments *fparams)
{
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Expression *e = new ComExp(0, ex1);
    return e;
}

#define X(Str) \
Expression *Str##Exp::buildArrayLoop(Arguments *fparams)	\
{								\
    /* Evaluate assign expressions left to right		\
     */								\
    Expression *ex1 = e1->buildArrayLoop(fparams);		\
    Expression *ex2 = e2->buildArrayLoop(fparams);		\
    Expression *e = new Str##Exp(0, ex1, ex2);			\
    return e;							\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X