view dmd/delegatize.c @ 109:5ab8e92611f9 trunk

[svn r113] Added initial support for associative arrays (AAs). Fixed some problems with the string runtime support functions. Fixed initialization of array of structs. Fixed slice assignment where LHS is slice but RHS is dynamic array. Fixed problems with result of assignment expressions. Fixed foreach problems with key type mismatches.
author lindquist
date Wed, 21 Nov 2007 04:13:15 +0100
parents c53b6e3fe49a
children
line wrap: on
line source


// Compiler implementation of the D programming language
// Copyright (c) 1999-2007 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.

#include <stdio.h>
#include <assert.h>

#include "mars.h"
#include "expression.h"
#include "statement.h"
#include "mtype.h"
#include "utf.h"
#include "declaration.h"
#include "aggregate.h"
#include "scope.h"

/********************************************
 * Convert from expression to delegate that returns the expression,
 * i.e. convert:
 *	expr
 * to:
 *	t delegate() { return expr; }
 */

Expression *Expression::toDelegate(Scope *sc, Type *t)
{
    //printf("Expression::toDelegate(t = %s) %s\n", t->toChars(), toChars());
    TypeFunction *tf = new TypeFunction(NULL, t, 0, LINKd);
    FuncLiteralDeclaration *fld =
	new FuncLiteralDeclaration(loc, loc, tf, TOKdelegate, NULL);
    Expression *e;
#if 1
    sc = sc->push();
    sc->parent = fld;		// set current function to be the delegate
    e = this;
    e->scanForNestedRef(sc);
    sc = sc->pop();
#else
    e = this->syntaxCopy();
#endif
    Statement *s = new ReturnStatement(loc, e);
    fld->fbody = s;
    e = new FuncExp(loc, fld);
    e = e->semantic(sc);
    return e;
}

/******************************
 * Perform scanForNestedRef() on an array of Expressions.
 */

void arrayExpressionScanForNestedRef(Scope *sc, Expressions *a)
{
    //printf("arrayExpressionScanForNestedRef(%p)\n", a);
    if (a)
    {
	for (int i = 0; i < a->dim; i++)
	{   Expression *e = (Expression *)a->data[i];

	    if (e)
	    {
		e->scanForNestedRef(sc);
	    }
	}
    }
}

void Expression::scanForNestedRef(Scope *sc)
{
    //printf("Expression::scanForNestedRef(%s)\n", toChars());
}

void SymOffExp::scanForNestedRef(Scope *sc)
{
    //printf("SymOffExp::scanForNestedRef(%s)\n", toChars());
    VarDeclaration *v = var->isVarDeclaration();
    if (v)
	v->checkNestedReference(sc, 0);
}

void VarExp::scanForNestedRef(Scope *sc)
{
    //printf("VarExp::scanForNestedRef(%s)\n", toChars());
    VarDeclaration *v = var->isVarDeclaration();
    if (v)
	v->checkNestedReference(sc, 0);
}

void ThisExp::scanForNestedRef(Scope *sc)
{
    assert(var);
    var->isVarDeclaration()->checkNestedReference(sc, 0);
}

void SuperExp::scanForNestedRef(Scope *sc)
{
    ThisExp::scanForNestedRef(sc);
}

void FuncExp::scanForNestedRef(Scope *sc)
{
    //printf("FuncExp::scanForNestedRef(%s)\n", toChars());
    //fd->parent = sc->parent;
}

void DeclarationExp::scanForNestedRef(Scope *sc)
{
    //printf("DeclarationExp::scanForNestedRef() %s\n", toChars());
    declaration->parent = sc->parent;
}

void NewExp::scanForNestedRef(Scope *sc)
{
    //printf("NewExp::scanForNestedRef(Scope *sc): %s\n", toChars());

    if (thisexp)
	thisexp->scanForNestedRef(sc);
    arrayExpressionScanForNestedRef(sc, newargs);
    arrayExpressionScanForNestedRef(sc, arguments);
}

void UnaExp::scanForNestedRef(Scope *sc)
{
    e1->scanForNestedRef(sc);
}

void BinExp::scanForNestedRef(Scope *sc)
{
    e1->scanForNestedRef(sc);
    e2->scanForNestedRef(sc);
}

void CallExp::scanForNestedRef(Scope *sc)
{
    //printf("CallExp::scanForNestedRef(Scope *sc): %s\n", toChars());
    e1->scanForNestedRef(sc);
    arrayExpressionScanForNestedRef(sc, arguments);
}


void IndexExp::scanForNestedRef(Scope *sc)
{
    e1->scanForNestedRef(sc);

    if (lengthVar)
    {	//printf("lengthVar\n");
	lengthVar->parent = sc->parent;
    }
    e2->scanForNestedRef(sc);
}


void SliceExp::scanForNestedRef(Scope *sc)
{
    e1->scanForNestedRef(sc);

    if (lengthVar)
    {	//printf("lengthVar\n");
	lengthVar->parent = sc->parent;
    }
    if (lwr)
	lwr->scanForNestedRef(sc);
    if (upr)
	upr->scanForNestedRef(sc);
}


void ArrayLiteralExp::scanForNestedRef(Scope *sc)
{
    arrayExpressionScanForNestedRef(sc, elements);
}


void AssocArrayLiteralExp::scanForNestedRef(Scope *sc)
{
    arrayExpressionScanForNestedRef(sc, keys);
    arrayExpressionScanForNestedRef(sc, values);
}


void StructLiteralExp::scanForNestedRef(Scope *sc)
{
    arrayExpressionScanForNestedRef(sc, elements);
}


void TupleExp::scanForNestedRef(Scope *sc)
{
    arrayExpressionScanForNestedRef(sc, exps);
}


void ArrayExp::scanForNestedRef(Scope *sc)
{
    e1->scanForNestedRef(sc);
    arrayExpressionScanForNestedRef(sc, arguments);
}


void CondExp::scanForNestedRef(Scope *sc)
{
    econd->scanForNestedRef(sc);
    e1->scanForNestedRef(sc);
    e2->scanForNestedRef(sc);
}