view gen/abi.cpp @ 1117:4c20fcc4252b

Fun with parameter attributes: For several of the "synthetic" parameters added to D functions, we can apply noalias and nocapture. They are sret parameters, 'nest' pointers passed to nested functions, and _argptr: Nocapture: - Sret and nest are nocapture because they don't represent D-level variables, and thus the callee can't (validly) obtain a pointer to them, let alone keep it around after it returns. - _argptr is nocapture because although the callee has access to it as a pointer, that pointer is invalidated when it returns. All three are noalias because they're function-local variables - Sret and _argptr are noalias because they're freshly alloca'd memory only used for a single function call that's not allowed to keep an aliasing pointer to it around (since the parameter is nocapture). - 'Nest' is noalias because the callee only ever has access to one such pointer per parent function, and every parent function has a different one. This commit also ensures attributes set on sret, _arguments and _argptr are propagated to calls to such functions. It also adds one exception to the general rule that attributes on function types should propagate to calls: the type of a delegate's function pointer has a 'nest' parameter, but this can either be a true 'nest' (for delegates to nested functions) or a 'this' (for delegates to member functions). Since 'this' is neither noalias nor nocapture, and there's generally no way to tell which one it is, we remove these attributes at the call site if the callee is a delegate.
author Frits van Bommel <fvbommel wxs.nl>
date Sat, 14 Mar 2009 22:15:31 +0100
parents dc608dc33081
children 15e9762bb620
line wrap: on
line source

#include "gen/llvm.h"

#include <algorithm>

#include "mars.h"

#include "gen/irstate.h"
#include "gen/llvmhelpers.h"
#include "gen/tollvm.h"
#include "gen/abi.h"
#include "gen/logger.h"
#include "gen/dvalue.h"

#include "ir/irfunction.h"

//////////////////////////////////////////////////////////////////////////////

void ABIRewrite::getL(Type* dty, DValue* v, llvm::Value* lval)
{
    LLValue* rval = get(dty, v);
    assert(rval->getType() == lval->getType()->getContainedType(0));
    DtoStore(rval, lval);
}

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/////////////////////              X86            ////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

// simply swap of real/imag parts for proper x87 complex abi
struct X87_complex_swap : ABIRewrite
{
    LLValue* get(Type*, DValue* v)
    {
        return DtoAggrPairSwap(v->getRVal());
    }
    LLValue* put(Type*, DValue* v)
    {
        return DtoAggrPairSwap(v->getRVal());
    }
    const LLType* type(Type*, const LLType* t)
    {
        return t;
    }
};

//////////////////////////////////////////////////////////////////////////////

struct X86_cfloat_rewrite : ABIRewrite
{
    // i64 -> {float,float}
    LLValue* get(Type*, DValue* dv)
    {
        LLValue* in = dv->getRVal();

        // extract real part
        LLValue* rpart = gIR->ir->CreateTrunc(in, LLType::Int32Ty);
        rpart = gIR->ir->CreateBitCast(rpart, LLType::FloatTy, ".re");

        // extract imag part
        LLValue* ipart = gIR->ir->CreateLShr(in, LLConstantInt::get(LLType::Int64Ty, 32, false));
        ipart = gIR->ir->CreateTrunc(ipart, LLType::Int32Ty);
        ipart = gIR->ir->CreateBitCast(ipart, LLType::FloatTy, ".im");

        // return {float,float} aggr pair with same bits
        return DtoAggrPair(rpart, ipart, ".final_cfloat");
    }

    // {float,float} -> i64
    LLValue* put(Type*, DValue* dv)
    {
        LLValue* v = dv->getRVal();

        // extract real
        LLValue* r = gIR->ir->CreateExtractValue(v, 0);
        // cast to i32
        r = gIR->ir->CreateBitCast(r, LLType::Int32Ty);
        // zext to i64
        r = gIR->ir->CreateZExt(r, LLType::Int64Ty);

        // extract imag
        LLValue* i = gIR->ir->CreateExtractValue(v, 1);
        // cast to i32
        i = gIR->ir->CreateBitCast(i, LLType::Int32Ty);
        // zext to i64
        i = gIR->ir->CreateZExt(i, LLType::Int64Ty);
        // shift up
        i = gIR->ir->CreateShl(i, LLConstantInt::get(LLType::Int64Ty, 32, false));

        // combine and return
        return v = gIR->ir->CreateOr(r, i);
    }

    // {float,float} -> i64
    const LLType* type(Type*, const LLType* t)
    {
        return LLType::Int64Ty;
    }
};

//////////////////////////////////////////////////////////////////////////////

// FIXME: try into eliminating the alloca or if at least check
// if it gets optimized away

// convert byval struct
// when 
struct X86_struct_to_register : ABIRewrite
{
    // int -> struct
    LLValue* get(Type* dty, DValue* dv)
    {
        Logger::println("rewriting int -> struct");
        LLValue* mem = DtoAlloca(DtoType(dty), ".int_to_struct");
        LLValue* v = dv->getRVal();
        DtoStore(v, DtoBitCast(mem, getPtrToType(v->getType())));
        return DtoLoad(mem);
    }
    // int -> struct (with dst lvalue given)
    void getL(Type* dty, DValue* dv, llvm::Value* lval)
    {
        Logger::println("rewriting int -> struct");
        LLValue* v = dv->getRVal();
        DtoStore(v, DtoBitCast(lval, getPtrToType(v->getType())));
    }
    // struct -> int
    LLValue* put(Type* dty, DValue* dv)
    {
        Logger::println("rewriting struct -> int");
        assert(dv->isLVal());
        LLValue* mem = dv->getLVal();
        const LLType* t = LLIntegerType::get(dty->size()*8);
        DtoLoad(DtoBitCast(mem, getPtrToType(t)));
    }
    const LLType* type(Type* t, const LLType*)
    {
        size_t sz = t->size()*8;
        return LLIntegerType::get(sz);
    }
};

//////////////////////////////////////////////////////////////////////////////

struct X86TargetABI : TargetABI
{
    X87_complex_swap swapComplex;
    X86_cfloat_rewrite cfloatToInt;
    X86_struct_to_register structToReg;

    bool returnInArg(TypeFunction* tf)
    {
        Type* rt = tf->next->toBasetype();
        // D only returns structs on the stack
        if (tf->linkage == LINKd)
            return (rt->ty == Tstruct);
        // other ABI's follow C, which is cdouble and creal returned on the stack
        // as well as structs
        else
            return (rt->ty == Tstruct || rt->ty == Tcomplex64 || rt->ty == Tcomplex80);
    }

    bool passByVal(Type* t)
    {
        return t->toBasetype()->ty == Tstruct;
    }

    void rewriteFunctionType(TypeFunction* tf)
    {
        IrFuncTy& fty = tf->fty;
        Type* rt = fty.ret->type->toBasetype();

        // extern(D)
        if (tf->linkage == LINKd)
        {
            // RETURN VALUE

            // complex {re,im} -> {im,re}
            if (rt->iscomplex())
            {
                Logger::println("Rewriting complex return value");
                fty.ret->rewrite = &swapComplex;
            }

            // IMPLICIT PARAMETERS

            // mark this/nested params inreg
            if (fty.arg_this)
            {
                Logger::println("Putting 'this' in register");
                fty.arg_this->attrs = llvm::Attribute::InReg;
            }
            else if (fty.arg_nest)
            {
                Logger::println("Putting context ptr in register");
                fty.arg_nest->attrs = llvm::Attribute::InReg;
            }
            // otherwise try to mark the last param inreg
            else if (!fty.arg_sret && !fty.args.empty())
            {
                // The last parameter is passed in EAX rather than being pushed on the stack if the following conditions are met:
                //   * It fits in EAX.
                //   * It is not a 3 byte struct.
                //   * It is not a floating point type.

                IrFuncTyArg* last = fty.args.back();
                Type* lastTy = last->type->toBasetype();
                unsigned sz = lastTy->size();

                if (last->byref && !last->isByVal())
                {
                    Logger::println("Putting last (byref) parameter in register");
                    last->attrs |= llvm::Attribute::InReg;
                }
                else if (!lastTy->isfloating() && (sz == 1 || sz == 2 || sz == 4)) // right?
                {
                    // rewrite the struct into an integer to make inreg work
                    if (lastTy->ty == Tstruct)
                    {
                        last->rewrite = &structToReg;
                        last->ltype = structToReg.type(last->type, last->ltype);
                        last->byref = false;
                        // erase previous attributes
                        last->attrs = 0;
                    }
                    last->attrs |= llvm::Attribute::InReg;
                }
            }

            // FIXME: tf->varargs == 1 need to use C calling convention and vararg mechanism to live up to the spec:
            // "The caller is expected to clean the stack. _argptr is not passed, it is computed by the callee."

            // EXPLICIT PARAMETERS

            // reverse parameter order
            // for non variadics
            if (!fty.args.empty() && tf->varargs != 1)
            {
                fty.reverseParams = true;
            }
        }

        // extern(C) and all others
        else
        {
            // RETURN VALUE

            // cfloat -> i64
            if (tf->next->toBasetype() == Type::tcomplex32)
            {
                fty.ret->rewrite = &cfloatToInt;
                fty.ret->ltype = LLType::Int64Ty;
            }

            // IMPLICIT PARAMETERS

            // EXPLICIT PARAMETERS
        }
    }
};

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///////////////////            X86-64               //////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

#include "gen/abi-x86-64.h"

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///////////////////         Unknown targets         //////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

// Some reasonable defaults for when we don't know what ABI to use.
struct UnknownTargetABI : TargetABI
{
    bool returnInArg(TypeFunction* tf)
    {
        return (tf->next->toBasetype()->ty == Tstruct);
    }

    bool passByVal(Type* t)
    {
        return t->toBasetype()->ty == Tstruct;
    }

    void rewriteFunctionType(TypeFunction* t)
    {
        // why?
    }
};

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

TargetABI * TargetABI::getTarget()
{
    switch(global.params.cpu)
    {
    case ARCHx86:
        return new X86TargetABI;
    case ARCHx86_64:
        return getX86_64TargetABI();
    default:
        Logger::cout() << "WARNING: Unknown ABI, guessing...\n";
        return new UnknownTargetABI;
    }
}