view gen/passes/GarbageCollect2Stack.cpp @ 1650:40bd4a0d4870

Update to work with LLVM 2.7. Removed use of dyn_cast, llvm no compiles without exceptions and rtti by default. We do need exceptions for the libconfig stuff, but rtti isn't necessary (anymore). Debug info needs to be rewritten, as in LLVM 2.7 the format has completely changed. To have something to look at while rewriting, the old code has been wrapped inside #ifndef DISABLE_DEBUG_INFO , this means that you have to define this to compile at the moment. Updated tango 0.99.9 patch to include updated EH runtime code, which is needed for LLVM 2.7 as well.
author Tomas Lindquist Olsen
date Wed, 19 May 2010 12:42:32 +0200
parents 8d086d552909
children
line wrap: on
line source

#if USE_METADATA

//===- GarbageCollect2Stack - Optimize calls to the D garbage collector ---===//
//
//                             The LLVM D Compiler
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file attempts to turn allocations on the garbage-collected heap into
// stack allocations.
//
//===----------------------------------------------------------------------===//

#include "gen/metadata.h"

#define DEBUG_TYPE "dgc2stack"

#include "Passes.h"

#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

STATISTIC(NumGcToStack, "Number of calls promoted to constant-size allocas");
STATISTIC(NumToDynSize, "Number of calls promoted to dynamically-sized allocas");
STATISTIC(NumDeleted, "Number of GC calls deleted because the return value was unused");


namespace {
    struct Analysis {
        TargetData& TD;
        const Module& M;
        CallGraph* CG;
        CallGraphNode* CGNode;
        
        const Type* getTypeFor(Value* typeinfo) const;
    };
}

//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//

void EmitMemSet(IRBuilder<>& B, Value* Dst, Value* Val, Value* Len,
                const Analysis& A) {
    Dst = B.CreateBitCast(Dst, PointerType::getUnqual(B.getInt8Ty()));
    
    Module *M = B.GetInsertBlock()->getParent()->getParent();
    const Type* Tys[1];
    Tys[0] = Len->getType();
    Function *MemSet = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 1);
    Value *Align = ConstantInt::get(B.getInt32Ty(), 1);
    
    CallSite CS = B.CreateCall4(MemSet, Dst, Val, Len, Align);
    if (A.CGNode)
        A.CGNode->addCalledFunction(CS, A.CG->getOrInsertFunction(MemSet));
}

static void EmitMemZero(IRBuilder<>& B, Value* Dst, Value* Len,
                        const Analysis& A) {
    EmitMemSet(B, Dst, ConstantInt::get(B.getInt8Ty(), 0), Len, A);
}


//===----------------------------------------------------------------------===//
// Helpers for specific types of GC calls.
//===----------------------------------------------------------------------===//

namespace {
    class FunctionInfo {
    protected:
        const Type* Ty;
        
    public:
        unsigned TypeInfoArgNr;
        bool SafeToDelete;
        
        // Analyze the current call, filling in some fields. Returns true if
        // this is an allocation we can stack-allocate.
        virtual bool analyze(CallSite CS, const Analysis& A) {
            Value* TypeInfo = CS.getArgument(TypeInfoArgNr);
            Ty = A.getTypeFor(TypeInfo);
            return (Ty != NULL);
        }
        
        // Returns the alloca to replace this call.
        // It will always be inserted before the call.
        virtual AllocaInst* promote(CallSite CS, IRBuilder<>& B, const Analysis& A) {
            NumGcToStack++;
            
            Instruction* Begin = CS.getCaller()->getEntryBlock().begin();
            return new AllocaInst(Ty, ".nongc_mem", Begin); // FIXME: align?
        }
        
        FunctionInfo(unsigned typeInfoArgNr, bool safeToDelete)
        : TypeInfoArgNr(typeInfoArgNr), SafeToDelete(safeToDelete) {}
    };
    
    class ArrayFI : public FunctionInfo {
        Value* arrSize;
        int ArrSizeArgNr;
        bool Initialized;
        
    public:
        ArrayFI(unsigned tiArgNr, bool safeToDelete, bool initialized,
                unsigned arrSizeArgNr)
        : FunctionInfo(tiArgNr, safeToDelete),
          ArrSizeArgNr(arrSizeArgNr),
          Initialized(initialized)
        {}
        
        virtual bool analyze(CallSite CS, const Analysis& A) {
            if (!FunctionInfo::analyze(CS, A))
                return false;
            
            arrSize = CS.getArgument(ArrSizeArgNr);
            const IntegerType* SizeType =
                dyn_cast<IntegerType>(arrSize->getType());
            if (!SizeType)
                return false;
            unsigned bits = SizeType->getBitWidth();
            if (bits > 32) {
                // The array size of an alloca must be an i32, so make sure
                // the conversion is safe.
                APInt Mask = APInt::getHighBitsSet(bits, bits - 32);
                APInt KnownZero(bits, 0), KnownOne(bits, 0);
                ComputeMaskedBits(arrSize, Mask, KnownZero, KnownOne, &A.TD);
                if ((KnownZero & Mask) != Mask)
                    return false;
            }
            // Extract the element type from the array type.
            const StructType* ArrTy = dyn_cast<StructType>(Ty);
            assert(ArrTy && "Dynamic array type not a struct?");
            assert(isa<IntegerType>(ArrTy->getElementType(0)));
            const PointerType* PtrTy =
                cast<PointerType>(ArrTy->getElementType(1));
            Ty = PtrTy->getElementType();
            return true;
        }
        
        virtual AllocaInst* promote(CallSite CS, IRBuilder<>& B, const Analysis& A) {
            IRBuilder<> Builder = B;
            // If the allocation is of constant size it's best to put it in the
            // entry block, so do so if we're not already there.
            // For dynamically-sized allocations it's best to avoid the overhead
            // of allocating them if possible, so leave those where they are.
            // While we're at it, update statistics too.
            if (isa<Constant>(arrSize)) {
                BasicBlock& Entry = CS.getCaller()->getEntryBlock();
                if (Builder.GetInsertBlock() != &Entry)
                    Builder.SetInsertPoint(&Entry, Entry.begin());
                NumGcToStack++;
            } else {
                NumToDynSize++;
            }
            
            // Convert array size to 32 bits if necessary
            Value* count = Builder.CreateIntCast(arrSize, Builder.getInt32Ty(), false);
            AllocaInst* alloca = Builder.CreateAlloca(Ty, count, ".nongc_mem"); // FIXME: align?
            
            if (Initialized) {
                // For now, only zero-init is supported.
                uint64_t size = A.TD.getTypeStoreSize(Ty);
                Value* TypeSize = ConstantInt::get(arrSize->getType(), size);
                // Use the original B to put initialization at the
                // allocation site.
                Value* Size = B.CreateMul(TypeSize, arrSize);
                EmitMemZero(B, alloca, Size, A);
            }
            
            return alloca;
        }
    };
    
    // FunctionInfo for _d_allocclass
    class AllocClassFI : public FunctionInfo {
        public:
        virtual bool analyze(CallSite CS, const Analysis& A) {
            // This call contains no TypeInfo parameter, so don't call the
            // base class implementation here...
            if (CS.arg_size() != 1)
                return false;
            Value* arg = CS.getArgument(0)->stripPointerCasts();
            GlobalVariable* ClassInfo = dyn_cast<GlobalVariable>(arg);
            if (!ClassInfo)
                return false;

            std::string metaname = CD_PREFIX;
            metaname += ClassInfo->getName();

            NamedMDNode* meta = A.M.getNamedMetadata(metaname);
            if (!meta)
                return false;

            MDNode* node = static_cast<MDNode*>(meta->getElement(0));
            if (!node || MD_GetNumElements(node) != CD_NumFields)
                return false;

            // Inserting destructor calls is not implemented yet, so classes
            // with destructors are ignored for now.
            Constant* hasDestructor = dyn_cast<Constant>(MD_GetElement(node, CD_Finalize));
            // We can't stack-allocate if the class has a custom deallocator
            // (Custom allocators don't get turned into this runtime call, so
            // those can be ignored)
            Constant* hasCustomDelete = dyn_cast<Constant>(MD_GetElement(node, CD_CustomDelete));
            if (hasDestructor == NULL || hasCustomDelete == NULL)
                return false;
            
            if (ConstantExpr::getOr(hasDestructor, hasCustomDelete)
                    != ConstantInt::getFalse(A.M.getContext()))
                return false;
            
            Ty = MD_GetElement(node, CD_BodyType)->getType();
            return true;
        }
        
        // The default promote() should be fine.
        
        AllocClassFI() : FunctionInfo(~0u, true) {}
    };
}


//===----------------------------------------------------------------------===//
// GarbageCollect2Stack Pass Implementation
//===----------------------------------------------------------------------===//

namespace {
    /// This pass replaces GC calls with alloca's
    ///
    class VISIBILITY_HIDDEN GarbageCollect2Stack : public FunctionPass {
        StringMap<FunctionInfo*> KnownFunctions;
        Module* M;
        
        FunctionInfo AllocMemoryT;
        ArrayFI NewArrayVT;
        ArrayFI NewArrayT;
        AllocClassFI AllocClass;
        
    public:
        static char ID; // Pass identification
        GarbageCollect2Stack();
        
        bool doInitialization(Module &M) {
            this->M = &M;
            return false;
        }
        
        bool runOnFunction(Function &F);
        
        virtual void getAnalysisUsage(AnalysisUsage &AU) const {
          AU.addRequired<TargetData>();
          AU.addRequired<DominatorTree>();
          
          AU.addPreserved<CallGraph>();
          AU.addPreserved<DominatorTree>();
        }
    };
    char GarbageCollect2Stack::ID = 0;
} // end anonymous namespace.

static RegisterPass<GarbageCollect2Stack>
X("dgc2stack", "Promote (GC'ed) heap allocations to stack");

// Public interface to the pass.
FunctionPass *createGarbageCollect2Stack() {
  return new GarbageCollect2Stack(); 
}

GarbageCollect2Stack::GarbageCollect2Stack()
: FunctionPass(&ID),
  AllocMemoryT(0, true),
  NewArrayVT(0, true, false, 1),
  NewArrayT(0, true, true, 1)
{
    KnownFunctions["_d_allocmemoryT"] = &AllocMemoryT;
    KnownFunctions["_d_newarrayvT"] = &NewArrayVT;
    KnownFunctions["_d_newarrayT"] = &NewArrayT;
    KnownFunctions["_d_allocclass"] = &AllocClass;
}

static void RemoveCall(CallSite CS, const Analysis& A) {
    if (CS.isInvoke()) {
        InvokeInst* Invoke = cast<InvokeInst>(CS.getInstruction());
        // If this was an invoke instruction, we need to do some extra
        // work to preserve the control flow.
        
        // Create a "conditional" branch that -simplifycfg can clean up, so we
        // can keep using the DominatorTree without updating it.
        BranchInst::Create(Invoke->getNormalDest(), Invoke->getUnwindDest(),
            ConstantInt::getTrue(A.M.getContext()), Invoke->getParent());
    }
    // Remove the runtime call.
    if (A.CGNode)
        A.CGNode->removeCallEdgeFor(CS);
    CS.getInstruction()->eraseFromParent();
}

static bool isSafeToStackAllocate(Instruction* Alloc, DominatorTree& DT);

/// runOnFunction - Top level algorithm.
///
bool GarbageCollect2Stack::runOnFunction(Function &F) {
    DEBUG(errs() << "\nRunning -dgc2stack on function " << F.getName() << '\n');
    
    TargetData& TD = getAnalysis<TargetData>();
    DominatorTree& DT = getAnalysis<DominatorTree>();
    CallGraph* CG = getAnalysisIfAvailable<CallGraph>();
    CallGraphNode* CGNode = CG ? (*CG)[&F] : NULL;
    
    Analysis A = { TD, *M, CG, CGNode };
    
    BasicBlock& Entry = F.getEntryBlock();
    
    IRBuilder<> AllocaBuilder(&Entry, Entry.begin());
    
    bool Changed = false;
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
        for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
            // Ignore non-calls.
            Instruction* Inst = I++;
            CallSite CS = CallSite::get(Inst);
            if (!CS.getInstruction())
                continue;
            
            // Ignore indirect calls and calls to non-external functions.
            Function *Callee = CS.getCalledFunction();
            if (Callee == 0 || !Callee->isDeclaration() ||
                    !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
                continue;
            
            // Ignore unknown calls.
            StringMap<FunctionInfo*>::iterator OMI =
                KnownFunctions.find(Callee->getName());
            if (OMI == KnownFunctions.end()) continue;
            
            assert(isa<PointerType>(Inst->getType())
                && "GC function doesn't return a pointer?");
            
            FunctionInfo* info = OMI->getValue();
            
            if (Inst->use_empty() && info->SafeToDelete) {
                Changed = true;
                NumDeleted++;
                RemoveCall(CS, A);
                continue;
            }
            
            DEBUG(errs() << "GarbageCollect2Stack inspecting: " << *Inst);
            
            if (!info->analyze(CS, A) || !isSafeToStackAllocate(Inst, DT))
                continue;
            
            // Let's alloca this!
            Changed = true;
            
            IRBuilder<> Builder(BB, Inst);
            Value* newVal = info->promote(CS, Builder, A);
            
            DEBUG(errs() << "Promoted to: " << *newVal);
            
            // Make sure the type is the same as it was before, and replace all
            // uses of the runtime call with the alloca.
            if (newVal->getType() != Inst->getType())
                newVal = Builder.CreateBitCast(newVal, Inst->getType());
            Inst->replaceAllUsesWith(newVal);
            
            RemoveCall(CS, A);
        }
    }
    
    return Changed;
}

const Type* Analysis::getTypeFor(Value* typeinfo) const {
    GlobalVariable* ti_global = dyn_cast<GlobalVariable>(typeinfo->stripPointerCasts());
    if (!ti_global)
        return NULL;
    
    std::string metaname = TD_PREFIX;
    metaname += ti_global->getName();

    NamedMDNode* meta = M.getNamedMetadata(metaname);
    if (!meta)
        return NULL;

    MDNode* node = static_cast<MDNode*>(meta->getElement(0));
    if (!node)
        return NULL;

    if (MD_GetNumElements(node) != TD_NumFields)
        return NULL;
    if (TD_Confirm >= 0 && (!MD_GetElement(node, TD_Confirm) ||
            MD_GetElement(node, TD_Confirm)->stripPointerCasts() != ti_global))
        return NULL;
    
    return MD_GetElement(node, TD_Type)->getType();
}

/// Returns whether Def is used by any instruction that is reachable from Alloc
/// (without executing Def again).
static bool mayBeUsedAfterRealloc(Instruction* Def, Instruction* Alloc, DominatorTree& DT) {
    DEBUG(errs() << "### mayBeUsedAfterRealloc()\n" << *Def << *Alloc);
    
    // If the definition isn't used it obviously won't be used after the
    // allocation.
    // If it does not dominate the allocation, there's no way for it to be used
    // without going through Def again first, since the definition couldn't
    // dominate the user either.
    if (Def->use_empty() || !DT.dominates(Def, Alloc)) {
        DEBUG(errs() << "### No uses or does not dominate allocation\n");
        return false;
    }
    
    DEBUG(errs() << "### Def dominates Alloc\n");
    
    BasicBlock* DefBlock = Def->getParent();
    BasicBlock* AllocBlock = Alloc->getParent();
    
    // Create a set of users and one of blocks containing users.
    SmallSet<User*, 16> Users;
    SmallSet<BasicBlock*, 16> UserBlocks;
    for (Instruction::use_iterator UI = Def->use_begin(), UE = Def->use_end();
         UI != UE; ++UI) {
        Instruction* User = cast<Instruction>(*UI);
        DEBUG(errs() << "USER: " << *User);
        BasicBlock* UserBlock = User->getParent();
        
        // This dominance check is not performed if they're in the same block
        // because it will just walk the instruction list to figure it out.
        // We will instead do that ourselves in the first iteration (for all
        // users at once).
        if (AllocBlock != UserBlock && DT.dominates(AllocBlock, UserBlock)) {
            // There's definitely a path from alloc to this user that does not
            // go through Def, namely any path that ends up in that user.
            DEBUG(errs() << "### Alloc dominates user " << *User);
            return true;
        }
        
        // Phi nodes are checked separately, so no need to enter them here.
        if (!isa<PHINode>(User)) {
            Users.insert(User);
            UserBlocks.insert(UserBlock);
        }
    }
    
    // Contains first instruction of block to inspect.
    typedef std::pair<BasicBlock*, BasicBlock::iterator> StartPoint;
    SmallVector<StartPoint, 16> Worklist;
    // Keeps track of successors that have been added to the work list.
    SmallSet<BasicBlock*, 16> Visited;
    
    // Start just after the allocation.
    // Note that we don't insert AllocBlock into the Visited set here so the
    // start of the block will get inspected if it's reachable.
    BasicBlock::iterator Start = Alloc;
    ++Start;
    Worklist.push_back(StartPoint(AllocBlock, Start));
    
    while (!Worklist.empty()) {
        StartPoint sp = Worklist.pop_back_val();
        BasicBlock* B = sp.first;
        BasicBlock::iterator BBI = sp.second;
        // BBI is either just after the allocation (in the first iteration)
        // or just after the last phi node in B (in subsequent iterations) here.
        
        // This whole 'if' is just a way to avoid performing the inner 'for'
        // loop when it can be determined not to be necessary, avoiding
        // potentially expensive walks of the instruction list.
        // It should be equivalent to just doing the loop.
        if (UserBlocks.count(B)) {
            if (B != DefBlock && B != AllocBlock) {
                // This block does not contain the definition or the allocation,
                // so any user in this block is definitely reachable without
                // finding either the definition or the allocation.
                DEBUG(errs() << "### Block " << B->getName()
                     << " contains a reachable user\n");
                return true;
            }
            // We need to walk the instructions in the block to see whether we
            // reach a user before we reach the definition or the allocation.
            for (BasicBlock::iterator E = B->end(); BBI != E; ++BBI) {
                if (&*BBI == Alloc || &*BBI == Def)
                    break;
                if (Users.count(BBI)) {
                    DEBUG(errs() << "### Problematic user: " << *BBI);
                    return true;
                }
            }
        } else if (B == DefBlock || (B == AllocBlock && BBI != Start)) {
            // There are no users in the block so the def or the allocation
            // will be encountered before any users though this path.
            // Skip to the next item on the worklist.
            continue;
        } else {
            // No users and no definition or allocation after the start point,
            // so just keep going.
        }
        
        // All instructions after the starting point in this block have been
        // accounted for. Look for successors to add to the work list.
        TerminatorInst* Term = B->getTerminator();
        unsigned SuccCount = Term->getNumSuccessors();
        for (unsigned i = 0; i < SuccCount; i++) {
            BasicBlock* Succ = Term->getSuccessor(i);
            BBI = Succ->begin();
            // Check phi nodes here because we only care about the operand
            // coming in from this block.
            bool SeenDef = false;
            while (isa<PHINode>(BBI)) {
                if (Def == cast<PHINode>(BBI)->getIncomingValueForBlock(B)) {
                    DEBUG(errs() << "### Problematic phi user: " << *BBI);
                    return true;
                }
                SeenDef |= (Def == &*BBI);
                ++BBI;
            }
            // If none of the phis we just looked at were the definition, we
            // haven't seen this block yet, and it's dominated by the def
            // (meaning paths through it could lead to users), add the block and
            // the first non-phi to the worklist.
            if (!SeenDef && Visited.insert(Succ) && DT.dominates(DefBlock, Succ))
                Worklist.push_back(StartPoint(Succ, BBI));
        }
    }
    // No users found in any block reachable from Alloc
    // without going through the definition again.
    return false;
}


/// isSafeToStackAllocate - Return true if the GC call passed in is safe to turn
/// into a stack allocation. This requires that the return value does not
/// escape from the function and no derived pointers are live at the call site
/// (i.e. if it's in a loop then the function can't use any pointer returned
/// from an earlier call after a new call has been made)
/// 
/// This is currently conservative where loops are involved: it can handle
/// simple loops, but returns false if any derived pointer is used in a
/// subsequent iteration.
/// 
/// Based on LLVM's PointerMayBeCaptured(), which only does escape analysis but
/// doesn't care about loops.
bool isSafeToStackAllocate(Instruction* Alloc, DominatorTree& DT) {
  assert(isa<PointerType>(Alloc->getType()) && "Allocation is not a pointer?");
  Value* V = Alloc;
  
  SmallVector<Use*, 16> Worklist;
  SmallSet<Use*, 16> Visited;
  
  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
       UI != UE; ++UI) {
    Use *U = &UI.getUse();
    Visited.insert(U);
    Worklist.push_back(U);
  }
  
  while (!Worklist.empty()) {
    Use *U = Worklist.pop_back_val();
    Instruction *I = cast<Instruction>(U->getUser());
    V = U->get();
    
    switch (I->getOpcode()) {
    case Instruction::Call:
    case Instruction::Invoke: {
      CallSite CS = CallSite::get(I);
      // Not captured if the callee is readonly, doesn't return a copy through
      // its return value and doesn't unwind (a readonly function can leak bits
      // by throwing an exception or not depending on the input value).
      if (CS.onlyReadsMemory() && CS.doesNotThrow() &&
          I->getType() == Type::getVoidTy(I->getContext()))
        break;
      
      // Not captured if only passed via 'nocapture' arguments.  Note that
      // calling a function pointer does not in itself cause the pointer to
      // be captured.  This is a subtle point considering that (for example)
      // the callee might return its own address.  It is analogous to saying
      // that loading a value from a pointer does not cause the pointer to be
      // captured, even though the loaded value might be the pointer itself
      // (think of self-referential objects).
      CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
      for (CallSite::arg_iterator A = B; A != E; ++A)
        if (A->get() == V && !CS.paramHasAttr(A - B + 1, Attribute::NoCapture))
          // The parameter is not marked 'nocapture' - captured.
          return false;
      // Only passed via 'nocapture' arguments, or is the called function - not
      // captured.
      break;
    }
    case Instruction::Free:
      // Freeing a pointer does not cause it to be captured.
      break;
    case Instruction::Load:
      // Loading from a pointer does not cause it to be captured.
      break;
    case Instruction::Store:
      if (V == I->getOperand(0))
        // Stored the pointer - it may be captured.
        return false;
      // Storing to the pointee does not cause the pointer to be captured.
      break;
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::PHI:
    case Instruction::Select:
      // It's not safe to stack-allocate if this derived pointer is live across
      // the original allocation.
      if (mayBeUsedAfterRealloc(I, Alloc, DT))
        return false;
      
      // The original value is not captured via this if the new value isn't.
      for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
           UI != UE; ++UI) {
        Use *U = &UI.getUse();
        if (Visited.insert(U))
          Worklist.push_back(U);
      }
      break;
    default:
      // Something else - be conservative and say it is captured.
      return false;
    }
  }
  
  // All uses examined - not captured or live across original allocation.
  return true;
}

#endif // USE_METADATA