view gen/naked.cpp @ 1650:40bd4a0d4870

Update to work with LLVM 2.7. Removed use of dyn_cast, llvm no compiles without exceptions and rtti by default. We do need exceptions for the libconfig stuff, but rtti isn't necessary (anymore). Debug info needs to be rewritten, as in LLVM 2.7 the format has completely changed. To have something to look at while rewriting, the old code has been wrapped inside #ifndef DISABLE_DEBUG_INFO , this means that you have to define this to compile at the moment. Updated tango 0.99.9 patch to include updated EH runtime code, which is needed for LLVM 2.7 as well.
author Tomas Lindquist Olsen
date Wed, 19 May 2010 12:42:32 +0200
parents 8d086d552909
children
line wrap: on
line source

#include "gen/llvm.h"
#include "llvm/InlineAsm.h"

#include "expression.h"
#include "statement.h"
#include "declaration.h"
#include "template.h"

#include <cassert>

#include "gen/logger.h"
#include "gen/irstate.h"
#include "gen/llvmhelpers.h"
#include "gen/tollvm.h"
#include "gen/dvalue.h"

//////////////////////////////////////////////////////////////////////////////////////////

void Statement::toNakedIR(IRState *p)
{
    error("not allowed in naked function");
}

//////////////////////////////////////////////////////////////////////////////////////////

void CompoundStatement::toNakedIR(IRState *p)
{
    Logger::println("CompoundStatement::toNakedIR(): %s", loc.toChars());
    LOG_SCOPE;

    if (statements)
    for (unsigned i = 0; i < statements->dim; i++)
    {
        Statement* s = (Statement*)statements->data[i];
        if (s) s->toNakedIR(p);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

void ExpStatement::toNakedIR(IRState *p)
{
    Logger::println("ExpStatement::toNakedIR(): %s", loc.toChars());
    LOG_SCOPE;

    // only expstmt supported in declarations
    if (exp->op != TOKdeclaration)
    {
        Statement::toNakedIR(p);
        return;
    }

    DeclarationExp* d = (DeclarationExp*)exp;
    VarDeclaration* vd = d->declaration->isVarDeclaration();
    FuncDeclaration* fd = d->declaration->isFuncDeclaration();
    EnumDeclaration* ed = d->declaration->isEnumDeclaration();

    // and only static variable/function declaration
    // no locals or nested stuffies!
    if (!vd && !fd && !ed)
    {
        Statement::toNakedIR(p);
        return;
    }
    else if (vd && !vd->isDataseg())
    {
        error("non-static variable '%s' not allowed in naked function", vd->toChars());
        return;
    }
    else if (fd && !fd->isStatic())
    {
        error("non-static nested function '%s' not allowed in naked function", fd->toChars());
        return;
    }
    // enum decls should always be safe

    // make sure the symbols gets processed
    d->declaration->codegen(Type::sir);
}

//////////////////////////////////////////////////////////////////////////////////////////

void LabelStatement::toNakedIR(IRState *p)
{
    Logger::println("LabelStatement::toNakedIR(): %s", loc.toChars());
    LOG_SCOPE;

    p->nakedAsm << p->func()->decl->mangle() << "_" << ident->toChars() << ":";

    if (statement)
        statement->toNakedIR(p);
}

//////////////////////////////////////////////////////////////////////////////////////////

void DtoDefineNakedFunction(FuncDeclaration* fd)
{
    Logger::println("DtoDefineNakedFunction(%s)", fd->mangle());
    LOG_SCOPE;

    assert(fd->ir.irFunc);
    gIR->functions.push_back(fd->ir.irFunc);

    // we need to do special processing on the body, since we only want
    // to allow actual inline asm blocks to reach the final asm output

    std::ostringstream& asmstr = gIR->nakedAsm;

    // build function header

    // FIXME: could we perhaps use llvm asmwriter to give us these details ?

    const char* mangle = fd->mangle();
    std::ostringstream tmpstr;

    // osx is different
    // also mangling has an extra underscore prefixed
    if (global.params.os == OSMacOSX)
    {
        std::string section = "text";
        bool weak = false;
        if (DtoIsTemplateInstance(fd))
        {
            tmpstr << "section\t__TEXT,__textcoal_nt,coalesced,pure_instructions";
            section = tmpstr.str();
            weak = true;
        }
        asmstr << "\t." << section << std::endl;
        asmstr << "\t.align\t4,0x90" << std::endl;
        asmstr << "\t.globl\t_" << mangle << std::endl;
        if (weak)
        {
            asmstr << "\t.weak_definition\t_" << mangle << std::endl;
        }
        asmstr << "_" << mangle << ":" << std::endl;
    }
    // this works on linux x86 32 and 64 bit
    // assume it works everywhere else as well for now
    // this needed a slight modification for Win
    else
    {
        const char* linkage = "globl";
        std::string section = "text";
        if (DtoIsTemplateInstance(fd))
        {
            linkage = "weak";
            tmpstr << "section\t.gnu.linkonce.t.";
            if (global.params.os != OSWindows)
            {
                tmpstr << mangle << ",\"ax\",@progbits";
            } else
            {
                tmpstr << "_" << mangle << ",\"ax\"";
            }
            section = tmpstr.str();
        }
        asmstr << "\t." << section << std::endl;
        asmstr << "\t.align\t16" << std::endl;
        
        if (global.params.os == OSWindows)
        {
            std::string def = "def";
            std::string endef = "endef";
            asmstr << "\t." << def << "\t_" << mangle << ";";
            // hard code these two numbers for now since gas ignores .scl and llvm
            // is defaulting to .type 32 for everything I have seen
            asmstr << "\t.scl 2; .type 32;\t" << "." << endef << std::endl;
            asmstr << "_";
        } else
        {
            asmstr << "\t." << linkage << "\t" << mangle << std::endl;
            asmstr << "\t.type\t" << mangle << ",@function" << std::endl;
        }
        
        asmstr << mangle << ":" << std::endl;
            
    }

    // emit body
    fd->fbody->toNakedIR(gIR);

    // emit size after body
    // llvm does this on linux, but not on osx or Win
    if (global.params.os != OSMacOSX && global.params.os != OSWindows)
    {
        asmstr << "\t.size\t" << mangle << ", .-" << mangle << std::endl << std::endl;
    }

    gIR->module->appendModuleInlineAsm(asmstr.str());
    asmstr.str("");

    gIR->functions.pop_back();
}

//////////////////////////////////////////////////////////////////////////////////////////

void emitABIReturnAsmStmt(IRAsmBlock* asmblock, Loc loc, FuncDeclaration* fdecl)
{
    Logger::println("emitABIReturnAsmStmt(%s)", fdecl->mangle());
    LOG_SCOPE;

    IRAsmStmt* as = new IRAsmStmt;

    const LLType* llretTy = DtoType(fdecl->type->nextOf());
    asmblock->retty = llretTy;
    asmblock->retn = 1;

    // FIXME: This should probably be handled by the TargetABI somehow.
    //        It should be able to do this for a greater variety of types.

    // x86
    if (global.params.cpu == ARCHx86)
    {
        LINK l = fdecl->linkage;
        assert((l == LINKd || l == LINKc || l == LINKwindows) && "invalid linkage for asm implicit return");

        Type* rt = fdecl->type->nextOf()->toBasetype();
        if (rt->isintegral() || rt->ty == Tpointer || rt->ty == Tclass || rt->ty == Taarray)
        {
            if (rt->size() == 8) {
                as->out_c = "=A,";
            } else {
                as->out_c = "={ax},";
            }
        }
        else if (rt->isfloating())
        {
            if (rt->iscomplex()) {
                if (fdecl->linkage == LINKd) {
                    // extern(D) always returns on the FPU stack
                    as->out_c = "={st},={st(1)},";
                    asmblock->retn = 2;
                } else if (rt->ty == Tcomplex32) {
                    // extern(C) cfloat is return as i64
                    as->out_c = "=A,";
                    asmblock->retty = LLType::getInt64Ty(gIR->context());
                } else {
                    // cdouble and creal extern(C) are returned in pointer
                    // don't add anything!
                    asmblock->retty = LLType::getVoidTy(gIR->context());
                    asmblock->retn = 0;
                    return;
                }
            } else {
                as->out_c = "={st},";
            }
        }
        else if (rt->ty == Tarray || rt->ty == Tdelegate)
        {
            as->out_c = "={ax},={dx},";
            asmblock->retn = 2;
        #if 0
            // this is to show how to allocate a temporary for the return value
            // in case the appropriate multi register constraint isn't supported.
            // this way abi return from inline asm can still be emulated.
            // note that "$<<out0>>" etc in the asm will translate to the correct
            // numbered output when the asm block in finalized

            // generate asm
            as->out_c = "=*m,=*m,";
            LLValue* tmp = DtoRawAlloca(llretTy, 0, ".tmp_asm_ret");
            as->out.push_back( tmp );
            as->out.push_back( DtoGEPi(tmp, 0,1) );
            as->code = "movd %eax, $<<out0>>" "\n\t" "mov %edx, $<<out1>>";

            // fix asmblock
            asmblock->retn = 0;
            asmblock->retemu = true;
            asmblock->asmBlock->abiret = tmp;

            // add "ret" stmt at the end of the block
            asmblock->s.push_back(as);

            // done, we don't want anything pushed in the front of the block
            return;
        #endif
        }
        else
        {
            error(loc, "unimplemented return type '%s' for implicit abi return", rt->toChars());
            fatal();
        }
    }

    // x86_64
    else if (global.params.cpu == ARCHx86_64)
    {
        LINK l = fdecl->linkage;
        /* TODO: Check if this works with extern(Windows), completely untested.
         *       In particular, returning cdouble may not work with
         *       extern(Windows) since according to X86CallingConv.td it
         *       doesn't allow XMM1 to be used.
         * (So is extern(C), but that should be fine as the calling convention
         * is identical to that of extern(D))
         */
        assert((l == LINKd || l == LINKc || l == LINKwindows) && "invalid linkage for asm implicit return");

        Type* rt = fdecl->type->nextOf()->toBasetype();
        if (rt->isintegral() || rt->ty == Tpointer || rt->ty == Tclass || rt->ty == Taarray)
        {
            as->out_c = "={ax},";
        }
        else if (rt->isfloating())
        {
            if (rt == Type::tcomplex80) {
                // On x87 stack, re=st, im=st(1)
                as->out_c = "={st},={st(1)},";
                asmblock->retn = 2;
            } else if (rt == Type::tfloat80 || rt == Type::timaginary80) {
                // On x87 stack
                as->out_c = "={st},";
            } else if (l != LINKd && rt == Type::tcomplex32) {
                // LLVM and GCC disagree on how to return {float, float}.
                // For compatibility, use the GCC/LLVM-GCC way for extern(C/Windows)
                // extern(C) cfloat -> %xmm0 (extract two floats)
                as->out_c = "={xmm0},";
                asmblock->retty = LLType::getDoubleTy(gIR->context());
            } else if (rt->iscomplex()) {
                // cdouble and extern(D) cfloat -> re=%xmm0, im=%xmm1
                as->out_c = "={xmm0},={xmm1},";
                asmblock->retn = 2;
            } else {
                // Plain float/double/ifloat/idouble
                as->out_c = "={xmm0},";
            }
        }
        else if (rt->ty == Tarray || rt->ty == Tdelegate)
        {
            as->out_c = "={ax},={dx},";
            asmblock->retn = 2;
        }
        else
        {
            error(loc, "unimplemented return type '%s' for implicit abi return", rt->toChars());
            fatal();
        }
    }

    // unsupported
    else
    {
        error(loc, "this target (%s) does not implement inline asm falling off the end of the function", global.params.targetTriple);
        fatal();
    }

    // return values always go in the front
    asmblock->s.push_front(as);
}

//////////////////////////////////////////////////////////////////////////////////////////

// sort of kinda related to naked ...

DValue * DtoInlineAsmExpr(Loc loc, FuncDeclaration * fd, Expressions * arguments)
{
    Logger::println("DtoInlineAsmExpr @ %s", loc.toChars());
    LOG_SCOPE;

    TemplateInstance* ti = fd->toParent()->isTemplateInstance();
    assert(ti && "invalid inline __asm expr");

    assert(arguments->dim >= 2 && "invalid __asm call");

    // get code param
    Expression* e = (Expression*)arguments->data[0];
    Logger::println("code exp: %s", e->toChars());
    StringExp* se = (StringExp*)e;
    if (e->op != TOKstring || se->sz != 1)
    {
        e->error("__asm code argument is not a char[] string literal");
        fatal();
    }
    std::string code((char*)se->string, se->len);

    // get constraints param
    e = (Expression*)arguments->data[1];
    Logger::println("constraint exp: %s", e->toChars());
    se = (StringExp*)e;
    if (e->op != TOKstring || se->sz != 1)
    {
        e->error("__asm constraints argument is not a char[] string literal");
        fatal();
    }
    std::string constraints((char*)se->string, se->len);

    // build runtime arguments
    size_t n = arguments->dim;

    LLSmallVector<llvm::Value*, 8> args;
    args.reserve(n-2);
    std::vector<const llvm::Type*> argtypes;
    argtypes.reserve(n-2);

    for (size_t i = 2; i < n; i++)
    {
        e = (Expression*)arguments->data[i];
        args.push_back(e->toElem(gIR)->getRVal());
        argtypes.push_back(args.back()->getType());
    }

    // build asm function type
    Type* type = fd->type->nextOf()->toBasetype();
    const llvm::Type* ret_type = DtoType(type);
    llvm::FunctionType* FT = llvm::FunctionType::get(ret_type, argtypes, false);

    // build asm call
    bool sideeffect = true;
    llvm::InlineAsm* ia = llvm::InlineAsm::get(FT, code, constraints, sideeffect);

    llvm::Value* rv = gIR->ir->CreateCall(ia, args.begin(), args.end(), "");

    // work around missing tuple support for users of the return value
    if (type->ty == Tstruct)
    {
        // make a copy
        llvm::Value* mem = DtoAlloca(type, ".__asm_tuple_ret");

        TypeStruct* ts = (TypeStruct*)type;
        size_t n = ts->sym->fields.dim;
        for (size_t i = 0; i < n; i++)
        {
            llvm::Value* v = gIR->ir->CreateExtractValue(rv, i, "");
            llvm::Value* gep = DtoGEPi(mem, 0, i);
            DtoStore(v, gep);
        }

        return new DVarValue(fd->type->nextOf(), mem);
    }

    // return call as im value
    return new DImValue(fd->type->nextOf(), rv);
}