view gen/abi.cpp @ 1650:40bd4a0d4870

Update to work with LLVM 2.7. Removed use of dyn_cast, llvm no compiles without exceptions and rtti by default. We do need exceptions for the libconfig stuff, but rtti isn't necessary (anymore). Debug info needs to be rewritten, as in LLVM 2.7 the format has completely changed. To have something to look at while rewriting, the old code has been wrapped inside #ifndef DISABLE_DEBUG_INFO , this means that you have to define this to compile at the moment. Updated tango 0.99.9 patch to include updated EH runtime code, which is needed for LLVM 2.7 as well.
author Tomas Lindquist Olsen
date Wed, 19 May 2010 12:42:32 +0200
parents 8d086d552909
children
line wrap: on
line source

#include "gen/llvm.h"

#include <algorithm>

#include "mars.h"

#include "gen/irstate.h"
#include "gen/llvmhelpers.h"
#include "gen/tollvm.h"
#include "gen/abi.h"
#include "gen/logger.h"
#include "gen/dvalue.h"
#include "gen/abi-generic.h"

#include "ir/irfunction.h"

//////////////////////////////////////////////////////////////////////////////

void ABIRewrite::getL(Type* dty, DValue* v, llvm::Value* lval)
{
    LLValue* rval = get(dty, v);
    assert(rval->getType() == lval->getType()->getContainedType(0));
    DtoStore(rval, lval);
}

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/////////////////////              X86            ////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

// simply swap of real/imag parts for proper x87 complex abi
struct X87_complex_swap : ABIRewrite
{
    LLValue* get(Type*, DValue* v)
    {
        return DtoAggrPairSwap(v->getRVal());
    }
    LLValue* put(Type*, DValue* v)
    {
        return DtoAggrPairSwap(v->getRVal());
    }
    const LLType* type(Type*, const LLType* t)
    {
        return t;
    }
};

//////////////////////////////////////////////////////////////////////////////

struct X86_cfloat_rewrite : ABIRewrite
{
    // i64 -> {float,float}
    LLValue* get(Type*, DValue* dv)
    {
        LLValue* in = dv->getRVal();

        // extract real part
        LLValue* rpart = gIR->ir->CreateTrunc(in, LLType::getInt32Ty(gIR->context()));
        rpart = gIR->ir->CreateBitCast(rpart, LLType::getFloatTy(gIR->context()), ".re");

        // extract imag part
        LLValue* ipart = gIR->ir->CreateLShr(in, LLConstantInt::get(LLType::getInt64Ty(gIR->context()), 32, false));
        ipart = gIR->ir->CreateTrunc(ipart, LLType::getInt32Ty(gIR->context()));
        ipart = gIR->ir->CreateBitCast(ipart, LLType::getFloatTy(gIR->context()), ".im");

        // return {float,float} aggr pair with same bits
        return DtoAggrPair(rpart, ipart, ".final_cfloat");
    }

    // {float,float} -> i64
    LLValue* put(Type*, DValue* dv)
    {
        LLValue* v = dv->getRVal();

        // extract real
        LLValue* r = gIR->ir->CreateExtractValue(v, 0);
        // cast to i32
        r = gIR->ir->CreateBitCast(r, LLType::getInt32Ty(gIR->context()));
        // zext to i64
        r = gIR->ir->CreateZExt(r, LLType::getInt64Ty(gIR->context()));

        // extract imag
        LLValue* i = gIR->ir->CreateExtractValue(v, 1);
        // cast to i32
        i = gIR->ir->CreateBitCast(i, LLType::getInt32Ty(gIR->context()));
        // zext to i64
        i = gIR->ir->CreateZExt(i, LLType::getInt64Ty(gIR->context()));
        // shift up
        i = gIR->ir->CreateShl(i, LLConstantInt::get(LLType::getInt64Ty(gIR->context()), 32, false));

        // combine and return
        return v = gIR->ir->CreateOr(r, i);
    }

    // {float,float} -> i64
    const LLType* type(Type*, const LLType* t)
    {
        return LLType::getInt64Ty(gIR->context());
    }
};

//////////////////////////////////////////////////////////////////////////////

// FIXME: try into eliminating the alloca or if at least check
// if it gets optimized away

// convert byval struct
// when 
struct X86_struct_to_register : ABIRewrite
{
    // int -> struct
    LLValue* get(Type* dty, DValue* dv)
    {
        Logger::println("rewriting int -> struct");
        LLValue* mem = DtoAlloca(dty, ".int_to_struct");
        LLValue* v = dv->getRVal();
        DtoStore(v, DtoBitCast(mem, getPtrToType(v->getType())));
        return DtoLoad(mem);
    }
    // int -> struct (with dst lvalue given)
    void getL(Type* dty, DValue* dv, llvm::Value* lval)
    {
        Logger::println("rewriting int -> struct");
        LLValue* v = dv->getRVal();
        DtoStore(v, DtoBitCast(lval, getPtrToType(v->getType())));
    }
    // struct -> int
    LLValue* put(Type* dty, DValue* dv)
    {
        Logger::println("rewriting struct -> int");
        assert(dv->isLVal());
        LLValue* mem = dv->getLVal();
        const LLType* t = LLIntegerType::get(gIR->context(), dty->size()*8);
        return DtoLoad(DtoBitCast(mem, getPtrToType(t)));
    }
    const LLType* type(Type* t, const LLType*)
    {
        size_t sz = t->size()*8;
        return LLIntegerType::get(gIR->context(), sz);
    }
};

//////////////////////////////////////////////////////////////////////////////

struct X86TargetABI : TargetABI
{
    X87_complex_swap swapComplex;
    X86_cfloat_rewrite cfloatToInt;
    X86_struct_to_register structToReg;

    bool returnInArg(TypeFunction* tf)
    {
        Type* rt = tf->next->toBasetype();
        // D only returns structs on the stack
        if (tf->linkage == LINKd)
            return (rt->ty == Tstruct);
        // other ABI's follow C, which is cdouble and creal returned on the stack
        // as well as structs
        else
            return (rt->ty == Tstruct || rt->ty == Tcomplex64 || rt->ty == Tcomplex80);
    }

    bool passByVal(Type* t)
    {
        return t->toBasetype()->ty == Tstruct;
    }

    void rewriteFunctionType(TypeFunction* tf)
    {
        IrFuncTy& fty = tf->fty;
        Type* rt = fty.ret->type->toBasetype();

        // extern(D)
        if (tf->linkage == LINKd)
        {
            // RETURN VALUE

            // complex {re,im} -> {im,re}
            if (rt->iscomplex())
            {
                Logger::println("Rewriting complex return value");
                fty.ret->rewrite = &swapComplex;
            }

            // IMPLICIT PARAMETERS

            // mark this/nested params inreg
            if (fty.arg_this)
            {
                Logger::println("Putting 'this' in register");
                fty.arg_this->attrs = llvm::Attribute::InReg;
            }
            else if (fty.arg_nest)
            {
                Logger::println("Putting context ptr in register");
                fty.arg_nest->attrs = llvm::Attribute::InReg;
            }
            else if (IrFuncTyArg* sret = fty.arg_sret)
            {
                Logger::println("Putting sret ptr in register");
                // sret and inreg are incompatible, but the ABI requires the
                // sret parameter to be in EAX in this situation...
                sret->attrs = (sret->attrs | llvm::Attribute::InReg)
                                & ~llvm::Attribute::StructRet;
            }
            // otherwise try to mark the last param inreg
            else if (!fty.args.empty())
            {
                // The last parameter is passed in EAX rather than being pushed on the stack if the following conditions are met:
                //   * It fits in EAX.
                //   * It is not a 3 byte struct.
                //   * It is not a floating point type.

                IrFuncTyArg* last = fty.args.back();
                Type* lastTy = last->type->toBasetype();
                unsigned sz = lastTy->size();

                if (last->byref && !last->isByVal())
                {
                    Logger::println("Putting last (byref) parameter in register");
                    last->attrs |= llvm::Attribute::InReg;
                }
                else if (!lastTy->isfloating() && (sz == 1 || sz == 2 || sz == 4)) // right?
                {
                    // rewrite the struct into an integer to make inreg work
                    if (lastTy->ty == Tstruct)
                    {
                        last->rewrite = &structToReg;
                        last->ltype = structToReg.type(last->type, last->ltype);
                        last->byref = false;
                        // erase previous attributes
                        last->attrs = 0;
                    }
                    last->attrs |= llvm::Attribute::InReg;
                }
            }

            // FIXME: tf->varargs == 1 need to use C calling convention and vararg mechanism to live up to the spec:
            // "The caller is expected to clean the stack. _argptr is not passed, it is computed by the callee."

            // EXPLICIT PARAMETERS

            // reverse parameter order
            // for non variadics
            if (!fty.args.empty() && tf->varargs != 1)
            {
                fty.reverseParams = true;
            }
        }

        // extern(C) and all others
        else
        {
            // RETURN VALUE

            // cfloat -> i64
            if (tf->next->toBasetype() == Type::tcomplex32)
            {
                fty.ret->rewrite = &cfloatToInt;
                fty.ret->ltype = LLType::getInt64Ty(gIR->context());
            }

            // IMPLICIT PARAMETERS

            // EXPLICIT PARAMETERS
        }
    }
};

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///////////////////            X86-64               //////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

#include "gen/abi-x86-64.h"

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///////////////////         Unknown targets         //////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

// Some reasonable defaults for when we don't know what ABI to use.
struct UnknownTargetABI : TargetABI
{
    bool returnInArg(TypeFunction* tf)
    {
        return (tf->next->toBasetype()->ty == Tstruct);
    }

    bool passByVal(Type* t)
    {
        return t->toBasetype()->ty == Tstruct;
    }

    void rewriteFunctionType(TypeFunction* t)
    {
        // why?
    }
};

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

TargetABI * TargetABI::getTarget()
{
    switch(global.params.cpu)
    {
    case ARCHx86:
        return new X86TargetABI;
    case ARCHx86_64:
        return getX86_64TargetABI();
    default:
        Logger::cout() << "WARNING: Unknown ABI, guessing...\n";
        return new UnknownTargetABI;
    }
}

//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////

// A simple ABI for LLVM intrinsics.
struct IntrinsicABI : TargetABI
{
    RemoveStructPadding remove_padding;

    bool returnInArg(TypeFunction* tf)
    {
        return false;
    }

    bool passByVal(Type* t)
    {
        return false;
    }

    void fixup(IrFuncTyArg& arg) {
        assert(arg.type->ty == Tstruct);
        // TODO: Check that no unions are passed in or returned.

        LLType* abiTy = DtoUnpaddedStructType(arg.type);

        if (abiTy && abiTy != arg.ltype) {
            arg.ltype = abiTy;
            arg.rewrite = &remove_padding;
        }
    }

    void rewriteFunctionType(TypeFunction* tf)
    {
        assert(tf->linkage == LINKintrinsic);

        IrFuncTy& fty = tf->fty;

        if (!fty.arg_sret) {
            Type* rt = fty.ret->type->toBasetype();
            if (rt->ty == Tstruct)  {
                Logger::println("Intrinsic ABI: Transforming return type");
                fixup(*fty.ret);
            }
        }

        Logger::println("Intrinsic ABI: Transforming arguments");
        LOG_SCOPE;

        for (IrFuncTy::ArgIter I = fty.args.begin(), E = fty.args.end(); I != E; ++I) {
            IrFuncTyArg& arg = **I;

            if (Logger::enabled())
                Logger::cout() << "Arg: " << arg.type->toChars() << '\n';

            // Arguments that are in memory are of no interest to us.
            if (arg.byref)
                continue;

            Type* ty = arg.type->toBasetype();
            if (ty->ty == Tstruct)
                fixup(arg);

            if (Logger::enabled())
                Logger::cout() << "New arg type: " << *arg.ltype << '\n';
        }
    }
};

TargetABI * TargetABI::getIntrinsic()
{
    static IntrinsicABI iabi;
    return &iabi;
}