view dmd/arrayop.c @ 1650:40bd4a0d4870

Update to work with LLVM 2.7. Removed use of dyn_cast, llvm no compiles without exceptions and rtti by default. We do need exceptions for the libconfig stuff, but rtti isn't necessary (anymore). Debug info needs to be rewritten, as in LLVM 2.7 the format has completely changed. To have something to look at while rewriting, the old code has been wrapped inside #ifndef DISABLE_DEBUG_INFO , this means that you have to define this to compile at the moment. Updated tango 0.99.9 patch to include updated EH runtime code, which is needed for LLVM 2.7 as well.
author Tomas Lindquist Olsen
date Wed, 19 May 2010 12:42:32 +0200
parents 44b145be2ef5
children
line wrap: on
line source


// Copyright (c) 1999-2009 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.

#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "rmem.h"

#include "stringtable.h"

#include "expression.h"
#include "statement.h"
#include "mtype.h"
#include "declaration.h"
#include "scope.h"
#include "id.h"
#include "module.h"
#include "init.h"

#if IN_DMD
extern int binary(const char *p , const char **tab, int high);

/**************************************
 * Hash table of array op functions already generated or known about.
 */

StringTable arrayfuncs;
#endif

/***********************************
 * Construct the array operation expression.
 */

Expression *BinExp::arrayOp(Scope *sc)
{
    //printf("BinExp::arrayOp() %s\n", toChars());

    if (type->toBasetype()->nextOf()->toBasetype()->ty == Tvoid)
    {
        error("Cannot perform array operations on void[] arrays");
        return new ErrorExp();
    }

    Expressions *arguments = new Expressions();

    /* The expression to generate an array operation for is mangled
     * into a name to use as the array operation function name.
     * Mangle in the operands and operators in RPN order, and type.
     */
    OutBuffer buf;
    buf.writestring("_array");
    buildArrayIdent(&buf, arguments);
    buf.writeByte('_');

    /* Append deco of array element type
     */
#if DMDV2
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->mutableOf()->deco);
#else
    buf.writestring(type->toBasetype()->nextOf()->toBasetype()->deco);
#endif

    size_t namelen = buf.offset;
    buf.writeByte(0);
    char *name = (char *)buf.extractData();

    /* Look up name in hash table
     */
    StringValue *sv = sc->module->arrayfuncs.update(name, namelen);
    FuncDeclaration *fd = (FuncDeclaration *)sv->ptrvalue;
    if (!fd)
    {
//     /* Some of the array op functions are written as library functions,
//      * presumably to optimize them with special CPU vector instructions.
//      * List those library functions here, in alpha order.
//      */
//     static const char *libArrayopFuncs[] =
//     {
//         "_arrayExpSliceAddass_a",
//         "_arrayExpSliceAddass_d",       // T[]+=T
//         "_arrayExpSliceAddass_f",       // T[]+=T
//         "_arrayExpSliceAddass_g",
//         "_arrayExpSliceAddass_h",
//         "_arrayExpSliceAddass_i",
//         "_arrayExpSliceAddass_k",
//         "_arrayExpSliceAddass_s",
//         "_arrayExpSliceAddass_t",
//         "_arrayExpSliceAddass_u",
//         "_arrayExpSliceAddass_w",
// 
//         "_arrayExpSliceDivass_d",       // T[]/=T
//         "_arrayExpSliceDivass_f",       // T[]/=T
// 
//         "_arrayExpSliceMinSliceAssign_a",
//         "_arrayExpSliceMinSliceAssign_d",   // T[]=T-T[]
//         "_arrayExpSliceMinSliceAssign_f",   // T[]=T-T[]
//         "_arrayExpSliceMinSliceAssign_g",
//         "_arrayExpSliceMinSliceAssign_h",
//         "_arrayExpSliceMinSliceAssign_i",
//         "_arrayExpSliceMinSliceAssign_k",
//         "_arrayExpSliceMinSliceAssign_s",
//         "_arrayExpSliceMinSliceAssign_t",
//         "_arrayExpSliceMinSliceAssign_u",
//         "_arrayExpSliceMinSliceAssign_w",
// 
//         "_arrayExpSliceMinass_a",
//         "_arrayExpSliceMinass_d",       // T[]-=T
//         "_arrayExpSliceMinass_f",       // T[]-=T
//         "_arrayExpSliceMinass_g",
//         "_arrayExpSliceMinass_h",
//         "_arrayExpSliceMinass_i",
//         "_arrayExpSliceMinass_k",
//         "_arrayExpSliceMinass_s",
//         "_arrayExpSliceMinass_t",
//         "_arrayExpSliceMinass_u",
//         "_arrayExpSliceMinass_w",
// 
//         "_arrayExpSliceMulass_d",       // T[]*=T
//         "_arrayExpSliceMulass_f",       // T[]*=T
//         "_arrayExpSliceMulass_i",
//         "_arrayExpSliceMulass_k",
//         "_arrayExpSliceMulass_s",
//         "_arrayExpSliceMulass_t",
//         "_arrayExpSliceMulass_u",
//         "_arrayExpSliceMulass_w",
// 
//         "_arraySliceExpAddSliceAssign_a",
//         "_arraySliceExpAddSliceAssign_d",   // T[]=T[]+T
//         "_arraySliceExpAddSliceAssign_f",   // T[]=T[]+T
//         "_arraySliceExpAddSliceAssign_g",
//         "_arraySliceExpAddSliceAssign_h",
//         "_arraySliceExpAddSliceAssign_i",
//         "_arraySliceExpAddSliceAssign_k",
//         "_arraySliceExpAddSliceAssign_s",
//         "_arraySliceExpAddSliceAssign_t",
//         "_arraySliceExpAddSliceAssign_u",
//         "_arraySliceExpAddSliceAssign_w",
// 
//         "_arraySliceExpDivSliceAssign_d",   // T[]=T[]/T
//         "_arraySliceExpDivSliceAssign_f",   // T[]=T[]/T
// 
//         "_arraySliceExpMinSliceAssign_a",
//         "_arraySliceExpMinSliceAssign_d",   // T[]=T[]-T
//         "_arraySliceExpMinSliceAssign_f",   // T[]=T[]-T
//         "_arraySliceExpMinSliceAssign_g",
//         "_arraySliceExpMinSliceAssign_h",
//         "_arraySliceExpMinSliceAssign_i",
//         "_arraySliceExpMinSliceAssign_k",
//         "_arraySliceExpMinSliceAssign_s",
//         "_arraySliceExpMinSliceAssign_t",
//         "_arraySliceExpMinSliceAssign_u",
//         "_arraySliceExpMinSliceAssign_w",
// 
//         "_arraySliceExpMulSliceAddass_d",   // T[] += T[]*T
//         "_arraySliceExpMulSliceAddass_f",
//         "_arraySliceExpMulSliceAddass_r",
// 
//         "_arraySliceExpMulSliceAssign_d",   // T[]=T[]*T
//         "_arraySliceExpMulSliceAssign_f",   // T[]=T[]*T
//         "_arraySliceExpMulSliceAssign_i",
//         "_arraySliceExpMulSliceAssign_k",
//         "_arraySliceExpMulSliceAssign_s",
//         "_arraySliceExpMulSliceAssign_t",
//         "_arraySliceExpMulSliceAssign_u",
//         "_arraySliceExpMulSliceAssign_w",
// 
//         "_arraySliceExpMulSliceMinass_d",   // T[] -= T[]*T
//         "_arraySliceExpMulSliceMinass_f",
//         "_arraySliceExpMulSliceMinass_r",
// 
//         "_arraySliceSliceAddSliceAssign_a",
//         "_arraySliceSliceAddSliceAssign_d", // T[]=T[]+T[]
//         "_arraySliceSliceAddSliceAssign_f", // T[]=T[]+T[]
//         "_arraySliceSliceAddSliceAssign_g",
//         "_arraySliceSliceAddSliceAssign_h",
//         "_arraySliceSliceAddSliceAssign_i",
//         "_arraySliceSliceAddSliceAssign_k",
//         "_arraySliceSliceAddSliceAssign_r", // T[]=T[]+T[]
//         "_arraySliceSliceAddSliceAssign_s",
//         "_arraySliceSliceAddSliceAssign_t",
//         "_arraySliceSliceAddSliceAssign_u",
//         "_arraySliceSliceAddSliceAssign_w",
// 
//         "_arraySliceSliceAddass_a",
//         "_arraySliceSliceAddass_d",     // T[]+=T[]
//         "_arraySliceSliceAddass_f",     // T[]+=T[]
//         "_arraySliceSliceAddass_g",
//         "_arraySliceSliceAddass_h",
//         "_arraySliceSliceAddass_i",
//         "_arraySliceSliceAddass_k",
//         "_arraySliceSliceAddass_s",
//         "_arraySliceSliceAddass_t",
//         "_arraySliceSliceAddass_u",
//         "_arraySliceSliceAddass_w",
// 
//         "_arraySliceSliceMinSliceAssign_a",
//         "_arraySliceSliceMinSliceAssign_d", // T[]=T[]-T[]
//         "_arraySliceSliceMinSliceAssign_f", // T[]=T[]-T[]
//         "_arraySliceSliceMinSliceAssign_g",
//         "_arraySliceSliceMinSliceAssign_h",
//         "_arraySliceSliceMinSliceAssign_i",
//         "_arraySliceSliceMinSliceAssign_k",
//         "_arraySliceSliceMinSliceAssign_r", // T[]=T[]-T[]
//         "_arraySliceSliceMinSliceAssign_s",
//         "_arraySliceSliceMinSliceAssign_t",
//         "_arraySliceSliceMinSliceAssign_u",
//         "_arraySliceSliceMinSliceAssign_w",
// 
//         "_arraySliceSliceMinass_a",
//         "_arraySliceSliceMinass_d",     // T[]-=T[]
//         "_arraySliceSliceMinass_f",     // T[]-=T[]
//         "_arraySliceSliceMinass_g",
//         "_arraySliceSliceMinass_h",
//         "_arraySliceSliceMinass_i",
//         "_arraySliceSliceMinass_k",
//         "_arraySliceSliceMinass_s",
//         "_arraySliceSliceMinass_t",
//         "_arraySliceSliceMinass_u",
//         "_arraySliceSliceMinass_w",
// 
//         "_arraySliceSliceMulSliceAssign_d", // T[]=T[]*T[]
//         "_arraySliceSliceMulSliceAssign_f", // T[]=T[]*T[]
//         "_arraySliceSliceMulSliceAssign_i",
//         "_arraySliceSliceMulSliceAssign_k",
//         "_arraySliceSliceMulSliceAssign_s",
//         "_arraySliceSliceMulSliceAssign_t",
//         "_arraySliceSliceMulSliceAssign_u",
//         "_arraySliceSliceMulSliceAssign_w",
// 
//         "_arraySliceSliceMulass_d",     // T[]*=T[]
//         "_arraySliceSliceMulass_f",     // T[]*=T[]
//         "_arraySliceSliceMulass_i",
//         "_arraySliceSliceMulass_k",
//         "_arraySliceSliceMulass_s",
//         "_arraySliceSliceMulass_t",
//         "_arraySliceSliceMulass_u",
//         "_arraySliceSliceMulass_w",
//     };
// 
//     int i = binary(name, libArrayopFuncs, sizeof(libArrayopFuncs) / sizeof(char *));
//     if (i == -1)
//     {
// #ifdef DEBUG    // Make sure our array is alphabetized
//         for (i = 0; i < sizeof(libArrayopFuncs) / sizeof(char *); i++)
//         {
//         if (strcmp(name, libArrayopFuncs[i]) == 0)
//             assert(0);
//         }
// #endif

        /* Not in library, so generate it.
         * Construct the function body:
         *  foreach (i; 0 .. p.length)    for (size_t i = 0; i < p.length; i++)
         *      loopbody;
         *  return p;
         */

        Parameters *fparams = new Parameters();
        Expression *loopbody = buildArrayLoop(fparams);
        Parameter *p = (Parameter *)fparams->data[0 /*fparams->dim - 1*/];
#if DMDV1
        // for (size_t i = 0; i < p.length; i++)
        Initializer *init = new ExpInitializer(0, new IntegerExp(0, 0, Type::tsize_t));
        Dsymbol *d = new VarDeclaration(0, Type::tsize_t, Id::p, init);
        Statement *s1 = new ForStatement(0,
        new DeclarationStatement(0, d),
        new CmpExp(TOKlt, 0, new IdentifierExp(0, Id::p), new ArrayLengthExp(0, new IdentifierExp(0, p->ident))),
        new PostExp(TOKplusplus, 0, new IdentifierExp(0, Id::p)),
        new ExpStatement(0, loopbody));
#else
        // foreach (i; 0 .. p.length)
        Statement *s1 = new ForeachRangeStatement(0, TOKforeach,
        new Parameter(0, NULL, Id::p, NULL),
        new IntegerExp(0, 0, Type::tint32),
        new ArrayLengthExp(0, new IdentifierExp(0, p->ident)),
        new ExpStatement(0, loopbody));
#endif
        Statement *s2 = new ReturnStatement(0, new IdentifierExp(0, p->ident));
        //printf("s2: %s\n", s2->toChars());
        Statement *fbody = new CompoundStatement(0, s1, s2);

        /* Construct the function
         */
        TypeFunction *ftype = new TypeFunction(fparams, type, 0, LINKc);
        //printf("ftype: %s\n", ftype->toChars());
        fd = new FuncDeclaration(0, 0, Lexer::idPool(name), STCundefined, ftype);
        fd->fbody = fbody;
        fd->protection = PROTpublic;
        fd->linkage = LINKd;

        // special attention for array ops
        fd->isArrayOp = true;

        sc->module->importedFrom->members->push(fd);

        sc = sc->push();
        sc->parent = sc->module->importedFrom;
        sc->stc = 0;
        sc->linkage = LINKd;
        fd->semantic(sc);
	    fd->semantic2(sc);
	    fd->semantic3(sc);
        sc->pop();
//     }
//     else
//     {   /* In library, refer to it.
//          */
//         // FIXME
//         fd = FuncDeclaration::genCfunc(NULL, type, name);
//     }
    sv->ptrvalue = fd;  // cache symbol in hash table
    }

    /* Call the function fd(arguments)
     */
    Expression *ec = new VarExp(0, fd);
    Expression *e = new CallExp(loc, ec, arguments);
    e->type = type;
    return e;
}

/******************************************
 * Construct the identifier for the array operation function,
 * and build the argument list to pass to it.
 */

void Expression::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    buf->writestring("Exp");
    arguments->shift(this);
}

void CastExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    Type *tb = type->toBasetype();
    if (tb->ty == Tarray || tb->ty == Tsarray)
    {
	e1->buildArrayIdent(buf, arguments);
    }
    else
	Expression::buildArrayIdent(buf, arguments);
}

void SliceExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    buf->writestring("Slice");
    arguments->shift(this);
}

void AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    /* Evaluate assign expressions right to left
     */
    e2->buildArrayIdent(buf, arguments);
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Assign");
}

#define X(Str) \
void Str##AssignExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments) \
{							\
    /* Evaluate assign expressions right to left	\
     */							\
    e2->buildArrayIdent(buf, arguments);		\
    e1->buildArrayIdent(buf, arguments);		\
    buf->writestring(#Str);				\
    buf->writestring("ass");				\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

void NegExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Neg");
}

void ComExp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)
{
    e1->buildArrayIdent(buf, arguments);
    buf->writestring("Com");
}

#define X(Str) \
void Str##Exp::buildArrayIdent(OutBuffer *buf, Expressions *arguments)	\
{									\
    /* Evaluate assign expressions left to right			\
     */									\
    e1->buildArrayIdent(buf, arguments);				\
    e2->buildArrayIdent(buf, arguments);				\
    buf->writestring(#Str);						\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

/******************************************
 * Construct the inner loop for the array operation function,
 * and build the parameter list.
 */

Expression *Expression::buildArrayLoop(Parameters *fparams)
{
    Identifier *id = Identifier::generateId("c", fparams->dim);
    Parameter *param = new Parameter(0, type, id, NULL);
    fparams->shift(param);
    Expression *e = new IdentifierExp(0, id);
    return e;
}

Expression *CastExp::buildArrayLoop(Parameters *fparams)
{
    Type *tb = type->toBasetype();
    if (tb->ty == Tarray || tb->ty == Tsarray)
    {
	return e1->buildArrayLoop(fparams);
    }
    else
	return Expression::buildArrayLoop(fparams);
}

Expression *SliceExp::buildArrayLoop(Parameters *fparams)
{
    Identifier *id = Identifier::generateId("p", fparams->dim);
    Parameter *param = new Parameter(STCconst, type, id, NULL);
    fparams->shift(param);
    Expression *e = new IdentifierExp(0, id);
    Expressions *arguments = new Expressions();
    Expression *index = new IdentifierExp(0, Id::p);
    arguments->push(index);
    e = new ArrayExp(0, e, arguments);
    return e;
}

Expression *AssignExp::buildArrayLoop(Parameters *fparams)
{
    /* Evaluate assign expressions right to left
     */
    Expression *ex2 = e2->buildArrayLoop(fparams);
#if DMDV2
    /* Need the cast because:
     *   b = c + p[i];
     * where b is a byte fails because (c + p[i]) is an int
     * which cannot be implicitly cast to byte.
     */
    ex2 = new CastExp(0, ex2, e1->type->nextOf());
#endif
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Parameter *param = (Parameter *)fparams->data[0];
    param->storageClass = 0;
    Expression *e = new AssignExp(0, ex1, ex2);
    return e;
}

#define X(Str) \
Expression *Str##AssignExp::buildArrayLoop(Parameters *fparams)	\
{								\
    /* Evaluate assign expressions right to left		\
     */								\
    Expression *ex2 = e2->buildArrayLoop(fparams);		\
    Expression *ex1 = e1->buildArrayLoop(fparams);		\
    Parameter *param = (Parameter *)fparams->data[0];		\
    param->storageClass = 0;					\
    Expression *e = new Str##AssignExp(0, ex1, ex2);		\
    return e;							\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X

Expression *NegExp::buildArrayLoop(Parameters *fparams)
{
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Expression *e = new NegExp(0, ex1);
    return e;
}

Expression *ComExp::buildArrayLoop(Parameters *fparams)
{
    Expression *ex1 = e1->buildArrayLoop(fparams);
    Expression *e = new ComExp(0, ex1);
    return e;
}

#define X(Str) \
Expression *Str##Exp::buildArrayLoop(Parameters *fparams)	\
{								\
    /* Evaluate assign expressions left to right		\
     */								\
    Expression *ex1 = e1->buildArrayLoop(fparams);		\
    Expression *ex2 = e2->buildArrayLoop(fparams);		\
    Expression *e = new Str##Exp(0, ex1, ex2);			\
    return e;							\
}

X(Add)
X(Min)
X(Mul)
X(Div)
X(Mod)
X(Xor)
X(And)
X(Or)

#undef X


/***********************************************
 * Test if operand is a valid array op operand.
 */

int Expression::isArrayOperand()
{
    //printf("Expression::isArrayOperand() %s\n", toChars());
    if (op == TOKslice)
	return 1;
    if (type->toBasetype()->ty == Tarray)
    {
	switch (op)
	{
	    case TOKadd:
	    case TOKmin:
	    case TOKmul:
	    case TOKdiv:
	    case TOKmod:
	    case TOKxor:
	    case TOKand:
	    case TOKor:
	    case TOKneg:
	    case TOKtilde:
		return 1;

	    default:
		break;
	}
    }
    return 0;
}