view gen/toir.cpp @ 715:30b42a283c8e

Removed TypeOpaque from DMD. Changed runtime functions taking opaque[] to void[]. Implemented proper type painting, to avoid "resizing" array casts in runtime calls that previously took opaque[]. Implemented dynamic arrays as first class types, this implements proper ABI for these types on x86. Added dwarf region end after call to assert function, fixes some problems with llvm not allowing this to be missing. Reverted change to WithStatement from rev [704] it breaks MiniD, mini/with2.d needs to be fixed some other way... Fixed tango bug 1339 in runtime, problem with _adReverseChar on invalid UTF-8. Disabled .bc generation in the compiler runtime part, genobj.d triggers some llvm bug when using debug info. the .o seems to work fine.
author Tomas Lindquist Olsen <tomas.l.olsen@gmail.com>
date Wed, 22 Oct 2008 14:55:33 +0200
parents 5a2983f97498
children 7261ff0f95ff
line wrap: on
line source

// Backend stubs

/* DMDFE backend stubs
 * This file contains the implementations of the backend routines.
 * For dmdfe these do nothing but print a message saying the module
 * has been parsed. Substitute your own behaviors for these routimes.
 */

#include <stdio.h>
#include <math.h>
#include <sstream>
#include <fstream>
#include <iostream>

#include "gen/llvm.h"

#include "attrib.h"
#include "total.h"
#include "init.h"
#include "mtype.h"
#include "template.h"
#include "hdrgen.h"
#include "port.h"
#include "mem.h"

#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/typeinf.h"
#include "gen/complex.h"
#include "gen/dvalue.h"
#include "gen/aa.h"
#include "gen/functions.h"
#include "gen/todebug.h"

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DeclarationExp::toElem(IRState* p)
{
    Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars());
    LOG_SCOPE;

    return DtoDeclarationExp(declaration);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* VarExp::toElem(IRState* p)
{
    Logger::print("VarExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(var);
    if (VarDeclaration* vd = var->isVarDeclaration())
    {
        Logger::println("VarDeclaration %s", vd->toChars());

        // _arguments
        if (vd->ident == Id::_arguments && p->func()->_arguments)
        {
            Logger::println("Id::_arguments");
            LLValue* v = p->func()->_arguments;
            return new DVarValue(type, vd, v);
        }
        // _argptr
        else if (vd->ident == Id::_argptr && p->func()->_argptr)
        {
            Logger::println("Id::_argptr");
            LLValue* v = p->func()->_argptr;
            return new DVarValue(type, vd, v);
        }
        // _dollar
        else if (vd->ident == Id::dollar)
        {
            Logger::println("Id::dollar");
            assert(!p->arrays.empty());
            LLValue* tmp = DtoArrayLen(p->arrays.back());
            return new DImValue(type, tmp);
        }
        // typeinfo
        else if (TypeInfoDeclaration* tid = vd->isTypeInfoDeclaration())
        {
            Logger::println("TypeInfoDeclaration");
            DtoForceDeclareDsymbol(tid);
            assert(tid->ir.getIrValue());
            const LLType* vartype = DtoType(type);
            LLValue* m = tid->ir.getIrValue();
            if (m->getType() != getPtrToType(vartype))
                m = p->ir->CreateBitCast(m, vartype, "tmp");
            return new DImValue(type, m);
        }
        // classinfo
        else if (ClassInfoDeclaration* cid = vd->isClassInfoDeclaration())
        {
            Logger::println("ClassInfoDeclaration: %s", cid->cd->toChars());
            DtoForceDeclareDsymbol(cid->cd);
            assert(cid->cd->ir.irStruct->classInfo);
            return new DVarValue(type, vd, cid->cd->ir.irStruct->classInfo);
        }
        // nested variable
        else if (vd->nestedref) {
            Logger::println("nested variable");
            return DtoNestedVariable(loc, type, vd);
        }
        // function parameter
        else if (vd->isParameter()) {
            Logger::println("function param");
            FuncDeclaration* fd = vd->toParent2()->isFuncDeclaration();
            if (fd && fd != p->func()->decl) {
                Logger::println("nested parameter");
                return DtoNestedVariable(loc, type, vd);
            }
            else if (vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type) || llvm::isa<llvm::AllocaInst>(vd->ir.getIrValue())) {
                return new DVarValue(type, vd, vd->ir.getIrValue());
            }
            else if (llvm::isa<llvm::Argument>(vd->ir.getIrValue())) {
                return new DImValue(type, vd->ir.getIrValue());
            }
            else assert(0);
        }
        else {
            Logger::println("a normal variable");
            // take care of forward references of global variables
            if (vd->isDataseg() || (vd->storage_class & STCextern)) {
                vd->toObjFile(0); // TODO: multiobj
            }
            if (!vd->ir.isSet() || !vd->ir.getIrValue()) {
                error("variable %s not resolved", vd->toChars());
                if (Logger::enabled())
                    Logger::cout() << "unresolved variable had type: " << *DtoType(vd->type) << '\n';
                fatal();
            }
            if (vd->isDataseg() || (vd->storage_class & STCextern)) {
                DtoConstInitGlobal(vd);
            }
            return new DVarValue(type, vd, vd->ir.getIrValue());
        }
    }
    else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
    {
        Logger::println("FuncDeclaration");
        LLValue* func = 0;
        if (fdecl->llvmInternal != LLVMva_arg) {
            DtoForceDeclareDsymbol(fdecl);
            func = fdecl->ir.irFunc->func;
        }
        return new DFuncValue(fdecl, func);
    }
    else if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
    {
        // this seems to be the static initialiser for structs
        Type* sdecltype = sdecl->type->toBasetype();
        Logger::print("Sym: type=%s\n", sdecltype->toChars());
        assert(sdecltype->ty == Tstruct);
        TypeStruct* ts = (TypeStruct*)sdecltype;
        assert(ts->sym);
        DtoForceConstInitDsymbol(ts->sym);
        assert(ts->sym->ir.irStruct->init);
        return new DVarValue(type, ts->sym->ir.irStruct->init);
    }
    else
    {
        assert(0 && "Unimplemented VarExp type");
    }

    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* VarExp::toConstElem(IRState* p)
{
    Logger::print("VarExp::toConstElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
    {
        // this seems to be the static initialiser for structs
        Type* sdecltype = sdecl->type->toBasetype();
        Logger::print("Sym: type=%s\n", sdecltype->toChars());
        assert(sdecltype->ty == Tstruct);
        TypeStruct* ts = (TypeStruct*)sdecltype;
        DtoForceConstInitDsymbol(ts->sym);
        assert(ts->sym->ir.irStruct->constInit);
        return ts->sym->ir.irStruct->constInit;
    }
    else if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration())
    {
        const LLType* vartype = DtoType(type);
        LLConstant* m = DtoTypeInfoOf(ti->tinfo, false);
        if (m->getType() != getPtrToType(vartype))
            m = llvm::ConstantExpr::getBitCast(m, vartype);
        return m;
    }
    assert(0 && "Unsupported const VarExp kind");
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* IntegerExp::toElem(IRState* p)
{
    Logger::print("IntegerExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    return new DConstValue(type, c);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* IntegerExp::toConstElem(IRState* p)
{
    Logger::print("IntegerExp::toConstElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    const LLType* t = DtoType(type);
    if (isaPointer(t)) {
        Logger::println("pointer");
        LLConstant* i = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)value,false);
        return llvm::ConstantExpr::getIntToPtr(i, t);
    }
    assert(llvm::isa<LLIntegerType>(t));
    LLConstant* c = llvm::ConstantInt::get(t,(uint64_t)value,!type->isunsigned());
    assert(c);
    if (Logger::enabled())
        Logger::cout() << "value = " << *c << '\n';
    return c;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* RealExp::toElem(IRState* p)
{
    Logger::print("RealExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    return new DConstValue(type, c);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* RealExp::toConstElem(IRState* p)
{
    Logger::print("RealExp::toConstElem: %s | %s | %LX\n", toChars(), type->toChars(), value);
    LOG_SCOPE;
    Type* t = type->toBasetype();
    return DtoConstFP(t, value);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NullExp::toElem(IRState* p)
{
    Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    return new DNullValue(type, c);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* NullExp::toConstElem(IRState* p)
{
    Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars());
    LOG_SCOPE;
    const LLType* t = DtoType(type);
    if (type->ty == Tarray) {
        assert(isaStruct(t));
        return llvm::ConstantAggregateZero::get(t);
    }
    else {
        return llvm::Constant::getNullValue(t);
    }
    assert(0);
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ComplexExp::toElem(IRState* p)
{
    Logger::print("ComplexExp::toElem(): %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    LLConstant* c = toConstElem(p);
    LLValue* res;

    if (c->isNullValue()) {
        Type* t = type->toBasetype();
        if (t->ty == Tcomplex32)
            c = DtoConstFP(Type::tfloat32, 0);
        else if (t->ty == Tcomplex64)
            c = DtoConstFP(Type::tfloat64, 0);
        else if (t->ty == Tcomplex80)
            c = DtoConstFP(Type::tfloat80, 0);
        else
            assert(0);
        res = DtoAggrPair(DtoType(type), c, c);
    }
    else {
        res = DtoAggrPair(DtoType(type), c->getOperand(0), c->getOperand(1));
    }

    return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* ComplexExp::toConstElem(IRState* p)
{
    Logger::print("ComplexExp::toConstElem(): %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    return DtoConstComplex(type, value.re, value.im);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* StringExp::toElem(IRState* p)
{
    Logger::print("StringExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* dtype = type->toBasetype();
    Type* cty = dtype->next->toBasetype();

    const LLType* ct = DtoTypeNotVoid(cty);
    //printf("ct = %s\n", type->next->toChars());
    const LLArrayType* at = LLArrayType::get(ct,len+1);

    LLConstant* _init;
    if (cty->size() == 1) {
        uint8_t* str = (uint8_t*)string;
        std::string cont((char*)str, len);
        _init = llvm::ConstantArray::get(cont,true);
    }
    else if (cty->size() == 2) {
        uint16_t* str = (uint16_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else if (cty->size() == 4) {
        uint32_t* str = (uint32_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else
    assert(0);

    llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage;
    if (Logger::enabled())
        Logger::cout() << "type: " << *at << "\ninit: " << *_init << '\n';
    llvm::GlobalVariable* gvar = new llvm::GlobalVariable(at,true,_linkage,_init,".stringliteral",gIR->module);

    llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
    LLConstant* idxs[2] = { zero, zero };
    LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);

    if (dtype->ty == Tarray) {
        LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
        LLValue* tmpmem = DtoAlloca(DtoType(dtype),"tempstring");
        DtoSetArray(tmpmem, clen, arrptr);
        return new DVarValue(type, tmpmem);
    }
    else if (dtype->ty == Tsarray) {
        const LLType* dstType = getPtrToType(LLArrayType::get(ct, len));
        LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
        return new DVarValue(type, emem);
    }
    else if (dtype->ty == Tpointer) {
        return new DImValue(type, arrptr);
    }

    assert(0);
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* StringExp::toConstElem(IRState* p)
{
    Logger::print("StringExp::toConstElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* t = type->toBasetype();
    Type* cty = t->next->toBasetype();

    bool nullterm = (t->ty != Tsarray);
    size_t endlen = nullterm ? len+1 : len;

    const LLType* ct = DtoType(cty);
    const LLArrayType* at = LLArrayType::get(ct,endlen);

    LLConstant* _init;
    if (cty->size() == 1) {
        uint8_t* str = (uint8_t*)string;
        std::string cont((char*)str, len);
        _init = llvm::ConstantArray::get(cont, nullterm);
    }
    else if (cty->size() == 2) {
        uint16_t* str = (uint16_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        if (nullterm)
            vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else if (cty->size() == 4) {
        uint32_t* str = (uint32_t*)string;
        std::vector<LLConstant*> vals;
        for(size_t i=0; i<len; ++i) {
            vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
        }
        if (nullterm)
            vals.push_back(llvm::ConstantInt::get(ct, 0, false));
        _init = llvm::ConstantArray::get(at,vals);
    }
    else
    assert(0);

    if (t->ty == Tsarray)
    {
        return _init;
    }

    llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage;
    llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_init->getType(),true,_linkage,_init,".stringliteral",gIR->module);

    llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
    LLConstant* idxs[2] = { zero, zero };
    LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);

    if (t->ty == Tpointer) {
        return arrptr;
    }
    else if (t->ty == Tarray) {
        LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
        return DtoConstSlice(clen, arrptr);
    }

    assert(0);
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AssignExp::toElem(IRState* p)
{
    Logger::print("AssignExp::toElem: %s | (%s)(%s = %s)\n", toChars(), type->toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0);
    LOG_SCOPE;

    if (e1->op == TOKarraylength)
    {
        Logger::println("performing array.length assignment");
        ArrayLengthExp *ale = (ArrayLengthExp *)e1;
        DValue* arr = ale->e1->toElem(p);
        DVarValue arrval(ale->e1->type, arr->getLVal());
        DValue* newlen = e2->toElem(p);
        DSliceValue* slice = DtoResizeDynArray(arrval.getType(), &arrval, newlen);
        DtoAssign(loc, &arrval, slice);
        return newlen;
    }

    Logger::println("performing normal assignment");

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);
    DtoAssign(loc, l, r);

    if (l->isSlice())
        return l;

    return r;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AddExp::toElem(IRState* p)
{
    Logger::print("AddExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = type->toBasetype();
    Type* e1type = e1->type->toBasetype();
    Type* e1next = e1type->next ? e1type->next->toBasetype() : NULL;
    Type* e2type = e2->type->toBasetype();

    if (e1type != e2type) {
        if (e1type->ty == Tpointer) {
            Logger::println("add to pointer");
            if (r->isConst()) {
                llvm::ConstantInt* cofs = llvm::cast<llvm::ConstantInt>(r->isConst()->c);
                if (cofs->isZero()) {
                    Logger::println("is zero");
                    return new DImValue(type, l->getRVal());
                }
            }
            LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), r->getRVal(), "tmp", p->scopebb());
            return new DImValue(type, v);
        }
        else if (t->iscomplex()) {
            return DtoComplexAdd(loc, type, l, r);
        }
        assert(0);
    }
    else if (t->iscomplex()) {
        return DtoComplexAdd(loc, type, l, r);
    }
    else {
        return DtoBinAdd(l,r);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AddAssignExp::toElem(IRState* p)
{
    Logger::print("AddAssignExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = type->toBasetype();

    DValue* res;
    if (e1->type->toBasetype()->ty == Tpointer) {
        LLValue* gep = llvm::GetElementPtrInst::Create(l->getRVal(),r->getRVal(),"tmp",p->scopebb());
        res = new DImValue(type, gep);
    }
    else if (t->iscomplex()) {
        res = DtoComplexAdd(loc, e1->type, l, r);
    }
    else {
        res = DtoBinAdd(l,r);
    }
    DtoAssign(loc, l, res);

    return res;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* MinExp::toElem(IRState* p)
{
    Logger::print("MinExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = type->toBasetype();
    Type* t1 = e1->type->toBasetype();
    Type* t2 = e2->type->toBasetype();

    if (t1->ty == Tpointer && t2->ty == Tpointer) {
        LLValue* lv = l->getRVal();
        LLValue* rv = r->getRVal();
        if (Logger::enabled())
            Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
        lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp");
        rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp");
        LLValue* diff = p->ir->CreateSub(lv,rv,"tmp");
        if (diff->getType() != DtoType(type))
            diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp");
        return new DImValue(type, diff);
    }
    else if (t1->ty == Tpointer) {
        LLValue* idx = p->ir->CreateNeg(r->getRVal(), "tmp");
        LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), idx, "tmp", p->scopebb());
        return new DImValue(type, v);
    }
    else if (t->iscomplex()) {
        return DtoComplexSub(loc, type, l, r);
    }
    else {
        return DtoBinSub(l,r);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* MinAssignExp::toElem(IRState* p)
{
    Logger::print("MinAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = type->toBasetype();

    DValue* res;
    if (e1->type->toBasetype()->ty == Tpointer) {
        Logger::println("ptr");
        LLValue* tmp = r->getRVal();
        LLValue* zero = llvm::ConstantInt::get(tmp->getType(),0,false);
        tmp = llvm::BinaryOperator::CreateSub(zero,tmp,"tmp",p->scopebb());
        tmp = llvm::GetElementPtrInst::Create(l->getRVal(),tmp,"tmp",p->scopebb());
        res = new DImValue(type, tmp);
    }
    else if (t->iscomplex()) {
        Logger::println("complex");
        res = DtoComplexSub(loc, type, l, r);
    }
    else {
        Logger::println("basic");
        res = DtoBinSub(l,r);
    }
    DtoAssign(loc, l, res);

    return res;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* MulExp::toElem(IRState* p)
{
    Logger::print("MulExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    if (type->iscomplex()) {
        return DtoComplexMul(loc, type, l, r);
    }

    return DtoBinMul(type, l, r);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* MulAssignExp::toElem(IRState* p)
{
    Logger::print("MulAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    DValue* res;
    if (type->iscomplex()) {
        res = DtoComplexMul(loc, type, l, r);
    }
    else {
        res = DtoBinMul(l->getType(), l, r);
    }
    DtoAssign(loc, l, res);

    return res;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DivExp::toElem(IRState* p)
{
    Logger::print("DivExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    if (type->iscomplex()) {
        return DtoComplexDiv(loc, type, l, r);
    }

    return DtoBinDiv(type, l, r);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DivAssignExp::toElem(IRState* p)
{
    Logger::print("DivAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    DValue* res;
    if (type->iscomplex()) {
        res = DtoComplexDiv(loc, type, l, r);
    }
    else {
        res = DtoBinDiv(l->getType(), l, r);
    }
    DtoAssign(loc, l, res);

    return res;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ModExp::toElem(IRState* p)
{
    Logger::print("ModExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    return DtoBinRem(type, l, r);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ModAssignExp::toElem(IRState* p)
{
    Logger::print("ModAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    DValue* res = DtoBinRem(l->getType(), l, r);
    DtoAssign(loc, l, res);

    return res;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CallExp::toElem(IRState* p)
{
    Logger::print("CallExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // get the callee value
    DValue* fnval = e1->toElem(p);

    // get func value if any
    DFuncValue* dfnval = fnval->isFunc();

    // handle magic intrinsics (mapping to instructions)
    bool va_intrinsic = false;
    if (dfnval && dfnval->func)
    {
        FuncDeclaration* fndecl = dfnval->func;
        // va_start instruction
        if (fndecl->llvmInternal == LLVMva_start) {
            // llvm doesn't need the second param hence the override
            Expression* exp = (Expression*)arguments->data[0];
            DValue* expv = exp->toElem(p);
            LLValue* arg = DtoBitCast(expv->getLVal(), getVoidPtrType());
            return new DImValue(type, gIR->ir->CreateCall(GET_INTRINSIC_DECL(vastart), arg, ""));
        }
        // va_arg instruction
        else if (fndecl->llvmInternal == LLVMva_arg) {
            return DtoVaArg(loc, type, (Expression*)arguments->data[0]);
        }
        // C alloca
        else if (fndecl->llvmInternal == LLVMalloca) {
            Expression* exp = (Expression*)arguments->data[0];
            DValue* expv = exp->toElem(p);
            if (expv->getType()->toBasetype()->ty != Tint32)
                expv = DtoCast(loc, expv, Type::tint32);
            return new DImValue(type, p->ir->CreateAlloca(LLType::Int8Ty, expv->getRVal(), ".alloca"));
        }
    }

    return DtoCallFunction(loc, type, fnval, arguments);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CastExp::toElem(IRState* p)
{
    Logger::print("CastExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // get the value to cast
    DValue* u = e1->toElem(p);

    // cast it to the 'to' type, if necessary
    DValue* v = u;
    if (!to->equals(e1->type))
        v = DtoCast(loc, u, to);

    // paint the type, if necessary
    if (!type->equals(to))
        v = DtoPaintType(loc, v, type);

    // slices are not valid lvalues
    if (v->isSlice())
        return v;
    // if we're casting a lvalue, keep it around, we might be in a lvalue cast.
    else if(u->isLVal())
        return new DLRValue(u, v);
    // otherwise just return the new value
    return v;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* CastExp::toConstElem(IRState* p)
{
    Logger::print("CastExp::toConstElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    LLConstant* c = e1->toConstElem(p);
    const LLType* lltype = DtoType(type);

    if(!isaPointer(c->getType()) || !isaPointer(lltype)) {
        error("can only cast pointers to pointers at code generation time, not %s to %s", type->toChars(), e1->type->toChars());
        fatal();
    }

    return llvm::ConstantExpr::getBitCast(c, lltype);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* SymOffExp::toElem(IRState* p)
{
    Logger::print("SymOffExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(0 && "SymOffExp::toElem should no longer be called :/");
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AddrExp::toElem(IRState* p)
{
    Logger::println("AddrExp::toElem: %s | %s", toChars(), type->toChars());
    LOG_SCOPE;
    DValue* v = e1->toElem(p);
    if (v->isField()) {
        Logger::println("is field");
        return v;
    }
    else if (DFuncValue* fv = v->isFunc()) {
        Logger::println("is func");
        //Logger::println("FuncDeclaration");
        FuncDeclaration* fd = fv->func;
        assert(fd);
        DtoForceDeclareDsymbol(fd);
        return new DFuncValue(fd, fd->ir.irFunc->func);
    }
    else if (DImValue* im = v->isIm()) {
        Logger::println("is immediate");
        return v;
    }
    Logger::println("is nothing special");
    LLValue* lval = v->getLVal();
    if (Logger::enabled())
        Logger::cout() << "lval: " << *lval << '\n';
    return new DImValue(type, DtoBitCast(v->getLVal(), DtoType(type)));
}

LLConstant* AddrExp::toConstElem(IRState* p)
{
    assert(e1->op == TOKvar);
    VarExp* vexp = (VarExp*)e1;

    if (vexp->var->needThis())
    {
        error("need 'this' to access %s", vexp->var->toChars());
        fatal();
    }

    // global variable
    if (VarDeclaration* vd = vexp->var->isVarDeclaration())
    {
        LLConstant* llc = llvm::dyn_cast<LLConstant>(vd->ir.getIrValue());
        assert(llc);
        return llc;
    }
    // static function
    else if (FuncDeclaration* fd = vexp->var->isFuncDeclaration())
    {
        IrFunction* irfunc = fd->ir.irFunc;
        assert(irfunc);
        return irfunc->func;
    }
    // not yet supported
    else
    {
        error("constant expression '%s' not yet implemented", toChars());
        fatal();
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* PtrExp::toElem(IRState* p)
{
    Logger::println("PtrExp::toElem: %s | %s", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* a = e1->toElem(p);

    // this is *so* ugly.. I'd really like to figure out some way to avoid this badness...
    LLValue* lv = a->getRVal();
    LLValue* v = lv;

    Type* bt = type->toBasetype();

    // we can't load function pointers, but they aren't passed by reference either
    // FIXME: maybe a MayLoad function isn't a bad idea after all ...
    if (!DtoIsPassedByRef(bt) && bt->ty != Tfunction)
        v = DtoLoad(v);

    return new DLRValue(new DVarValue(type, lv), new DImValue(type, v));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DotVarExp::toElem(IRState* p)
{
    Logger::print("DotVarExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);

    Type* t = type->toBasetype();
    Type* e1type = e1->type->toBasetype();

    //Logger::println("e1type=%s", e1type->toChars());
    //Logger::cout() << *DtoType(e1type) << '\n';

    if (VarDeclaration* vd = var->isVarDeclaration()) {
        LLValue* arrptr;
        // indexing struct pointer
        if (e1type->ty == Tpointer) {
            assert(e1type->next->ty == Tstruct);
            TypeStruct* ts = (TypeStruct*)e1type->next;
            arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
        }
        // indexing normal struct
        else if (e1type->ty == Tstruct) {
            TypeStruct* ts = (TypeStruct*)e1type;
            arrptr = DtoIndexStruct(l->getRVal(), ts->sym, vd);
        }
        // indexing class
        else if (e1type->ty == Tclass) {
            TypeClass* tc = (TypeClass*)e1type;
            arrptr = DtoIndexClass(l->getRVal(), tc->sym, vd);
        }
        else
            assert(0);

        //Logger::cout() << "mem: " << *arrptr << '\n';
        return new DVarValue(type, vd, arrptr);
    }
    else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
    {
        DtoResolveDsymbol(fdecl);

        LLValue* funcval;
        LLValue* vthis2 = 0;
        if (e1type->ty == Tclass) {
            TypeClass* tc = (TypeClass*)e1type;
            if (tc->sym->isInterfaceDeclaration()) {
                vthis2 = DtoCastInterfaceToObject(l, NULL)->getRVal();
            }
        }
        LLValue* vthis = l->getRVal();
        if (!vthis2) vthis2 = vthis;

        // super call
        if (e1->op == TOKsuper) {
            DtoForceDeclareDsymbol(fdecl);
            funcval = fdecl->ir.irFunc->func;
            assert(funcval);
        }
        // normal virtual call
        else if (fdecl->isAbstract() || (!fdecl->isFinal() && fdecl->isVirtual())) {
            assert(fdecl->vtblIndex > 0);
            assert(e1type->ty == Tclass);

            LLValue* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
            LLValue* vtblidx = llvm::ConstantInt::get(LLType::Int32Ty, (size_t)fdecl->vtblIndex, false);
            if (Logger::enabled())
                Logger::cout() << "vthis: " << *vthis << '\n';
            funcval = DtoGEP(vthis, zero, zero);
            funcval = DtoLoad(funcval);
            funcval = DtoGEP(funcval, zero, vtblidx, toChars());
            funcval = DtoLoad(funcval);
        #if OPAQUE_VTBLS
            funcval = DtoBitCast(funcval, getPtrToType(DtoType(fdecl->type)));
            if (Logger::enabled())
                Logger::cout() << "funcval casted: " << *funcval << '\n';
        #endif
        }
        // static call
        else {
            DtoForceDeclareDsymbol(fdecl);
            funcval = fdecl->ir.irFunc->func;
            assert(funcval);
        }
        return new DFuncValue(fdecl, funcval, vthis2);
    }
    else {
        printf("unsupported dotvarexp: %s\n", var->toChars());
    }

    assert(0);
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ThisExp::toElem(IRState* p)
{
    Logger::print("ThisExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // this seems to happen for dmd generated assert statements like:
    //      assert(this, "null this");
    // FIXME: check for TOKthis in AssertExp instead
    if (!var)
    {
        LLValue* v = p->func()->thisArg;
        assert(v);
        return new DVarValue(type, v);
    }
    // regular this expr
    else if (VarDeclaration* vd = var->isVarDeclaration()) {
        LLValue* v;
        if (vd->toParent2() != p->func()->decl) {
            Logger::println("nested this exp");
            return DtoNestedVariable(loc, type, vd);
        }
        else {
            Logger::println("normal this exp");
            v = p->func()->thisArg;
        }
        return new DVarValue(type, vd, v);
    }

    // anything we're not yet handling ?
    assert(0);
    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* IndexExp::toElem(IRState* p)
{
    Logger::print("IndexExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);

    Type* e1type = e1->type->toBasetype();

    p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
    DValue* r = e2->toElem(p);
    p->arrays.pop_back();

    LLValue* zero = DtoConstUint(0);
    LLValue* one = DtoConstUint(1);

    LLValue* arrptr = 0;
    if (e1type->ty == Tpointer) {
        arrptr = DtoGEP1(l->getRVal(),r->getRVal());
    }
    else if (e1type->ty == Tsarray) {
        if(global.params.useArrayBounds) 
            DtoArrayBoundsCheck(loc, l, r, false);
        arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
    }
    else if (e1type->ty == Tarray) {
        if(global.params.useArrayBounds) 
            DtoArrayBoundsCheck(loc, l, r, false);
        arrptr = DtoArrayPtr(l);
        arrptr = DtoGEP1(arrptr,r->getRVal());
    }
    else if (e1type->ty == Taarray) {
        return DtoAAIndex(loc, type, l, r, modifiable);
    }
    else {
        Logger::println("invalid index exp! e1type: %s", e1type->toChars());
        assert(0);
    }
    return new DVarValue(type, arrptr);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* SliceExp::toElem(IRState* p)
{
    Logger::print("SliceExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
    // but this was broken if there *was* no original pointer, ie. a slice of a slice...
    // now all slices have *both* the 'len' and 'ptr' fields set to != null.

    // value being sliced
    LLValue* elen;
    LLValue* eptr;
    DValue* e = e1->toElem(p);

    // handle pointer slicing
    Type* etype = e1->type->toBasetype();
    if (etype->ty == Tpointer)
    {
        assert(lwr);
        eptr = e->getRVal();
    }
    // array slice
    else
    {
        eptr = DtoArrayPtr(e);
    }

    // has lower bound, pointer needs adjustment
    if (lwr)
    {
        // must have upper bound too then
        assert(upr);

        // get bounds (make sure $ works)
        p->arrays.push_back(e);
        DValue* lo = lwr->toElem(p);
        DValue* up = upr->toElem(p);
        p->arrays.pop_back();
        LLValue* vlo = lo->getRVal();
        LLValue* vup = up->getRVal();

        if(global.params.useArrayBounds && (etype->ty == Tsarray || etype->ty == Tarray))
            DtoArrayBoundsCheck(loc, e, up, true);

        // offset by lower
        eptr = DtoGEP1(eptr, vlo);

        // adjust length
        elen = p->ir->CreateSub(vup, vlo, "tmp");
    }
    // no bounds or full slice -> just convert to slice
    else
    {
        assert(e1->type->toBasetype()->ty != Tpointer);
        // if the sliceee is a static array, we use the length of that as DMD seems
        // to give contrary inconsistent sizesin some multidimensional static array cases.
        // (namely default initialization, int[16][16] arr; -> int[256] arr = 0;)
        if (etype->ty == Tsarray)
        {
            TypeSArray* tsa = (TypeSArray*)etype;
            elen = DtoConstSize_t(tsa->dim->toUInteger());
        }
        // for normal code the actual array length is what we want!
        else
        {
            elen = DtoArrayLen(e);
        }
    }

    return new DSliceValue(type, elen, eptr);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CmpExp::toElem(IRState* p)
{
    Logger::print("CmpExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = e1->type->toBasetype();
    Type* e2t = e2->type->toBasetype();

    LLValue* eval = 0;

    if (t->isintegral() || t->ty == Tpointer)
    {
        llvm::ICmpInst::Predicate cmpop;
        bool skip = false;
        // pointers don't report as being unsigned
        bool uns = (t->isunsigned() || t->ty == Tpointer);
        switch(op)
        {
        case TOKlt:
        case TOKul:
            cmpop = uns ? llvm::ICmpInst::ICMP_ULT : llvm::ICmpInst::ICMP_SLT;
            break;
        case TOKle:
        case TOKule:
            cmpop = uns ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_SLE;
            break;
        case TOKgt:
        case TOKug:
            cmpop = uns ? llvm::ICmpInst::ICMP_UGT : llvm::ICmpInst::ICMP_SGT;
            break;
        case TOKge:
        case TOKuge:
            cmpop = uns ? llvm::ICmpInst::ICMP_UGE : llvm::ICmpInst::ICMP_SGE;
            break;
        case TOKue:
            cmpop = llvm::ICmpInst::ICMP_EQ;
            break;
        case TOKlg:
            cmpop = llvm::ICmpInst::ICMP_NE;
            break;
        case TOKleg:
            skip = true;
            eval = llvm::ConstantInt::getTrue();
            break;
        case TOKunord:
            skip = true;
            eval = llvm::ConstantInt::getFalse();
            break;

        default:
            assert(0);
        }
        if (!skip)
        {
            LLValue* a = l->getRVal();
            LLValue* b = r->getRVal();
            if (Logger::enabled())
            {
                Logger::cout() << "type 1: " << *a << '\n';
                Logger::cout() << "type 2: " << *b << '\n';
            }
            if (a->getType() != b->getType())
                b = DtoBitCast(b, a->getType());
            eval = p->ir->CreateICmp(cmpop, a, b, "tmp");
        }
    }
    else if (t->isfloating())
    {
        llvm::FCmpInst::Predicate cmpop;
        switch(op)
        {
        case TOKlt:
            cmpop = llvm::FCmpInst::FCMP_OLT;break;
        case TOKle:
            cmpop = llvm::FCmpInst::FCMP_OLE;break;
        case TOKgt:
            cmpop = llvm::FCmpInst::FCMP_OGT;break;
        case TOKge:
            cmpop = llvm::FCmpInst::FCMP_OGE;break;
        case TOKunord:
            cmpop = llvm::FCmpInst::FCMP_UNO;break;
        case TOKule:
            cmpop = llvm::FCmpInst::FCMP_ULE;break;
        case TOKul:
            cmpop = llvm::FCmpInst::FCMP_ULT;break;
        case TOKuge:
            cmpop = llvm::FCmpInst::FCMP_UGE;break;
        case TOKug:
            cmpop = llvm::FCmpInst::FCMP_UGT;break;
        case TOKue:
            cmpop = llvm::FCmpInst::FCMP_UEQ;break;
        case TOKlg:
            cmpop = llvm::FCmpInst::FCMP_ONE;break;
        case TOKleg:
            cmpop = llvm::FCmpInst::FCMP_ORD;break;

        default:
            assert(0);
        }
        eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal(), "tmp");
    }
    else if (t->ty == Tsarray || t->ty == Tarray)
    {
        Logger::println("static or dynamic array");
        eval = DtoArrayCompare(loc,op,l,r);
    }
    else
    {
        assert(0 && "Unsupported CmpExp type");
    }

    return new DImValue(type, eval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* EqualExp::toElem(IRState* p)
{
    Logger::print("EqualExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    Type* t = e1->type->toBasetype();
    Type* e2t = e2->type->toBasetype();
    //assert(t == e2t);

    LLValue* eval = 0;

    // the Tclass catches interface comparisons, regular
    // class equality should be rewritten as a.opEquals(b) by this time
    if (t->isintegral() || t->ty == Tpointer || t->ty == Tclass)
    {
        Logger::println("integral or pointer or interface");
        llvm::ICmpInst::Predicate cmpop;
        switch(op)
        {
        case TOKequal:
            cmpop = llvm::ICmpInst::ICMP_EQ;
            break;
        case TOKnotequal:
            cmpop = llvm::ICmpInst::ICMP_NE;
            break;
        default:
            assert(0);
        }
        LLValue* lv = l->getRVal();
        LLValue* rv = r->getRVal();
        if (rv->getType() != lv->getType()) {
            rv = DtoBitCast(rv, lv->getType());
        }
        if (Logger::enabled())
        {
            Logger::cout() << "lv: " << *lv << '\n';
            Logger::cout() << "rv: " << *rv << '\n';
        }
        eval = p->ir->CreateICmp(cmpop, lv, rv, "tmp");
    }
    else if (t->iscomplex())
    {
        Logger::println("complex");
        eval = DtoComplexEquals(loc, op, l, r);
    }
    else if (t->isfloating())
    {
        Logger::println("floating");
        llvm::FCmpInst::Predicate cmpop;
        switch(op)
        {
        case TOKequal:
            cmpop = llvm::FCmpInst::FCMP_OEQ;
            break;
        case TOKnotequal:
            cmpop = llvm::FCmpInst::FCMP_UNE;
            break;
        default:
            assert(0);
        }
        eval = p->ir->CreateFCmp(cmpop, l->getRVal(), r->getRVal(), "tmp");
    }
    else if (t->ty == Tsarray || t->ty == Tarray)
    {
        Logger::println("static or dynamic array");
        eval = DtoArrayEquals(loc,op,l,r);
    }
    else if (t->ty == Tdelegate)
    {
        Logger::println("delegate");
        eval = DtoDelegateEquals(op,l->getRVal(),r->getRVal());
    }
    else if (t->ty == Tstruct)
    {
        Logger::println("struct");
        // when this is reached it means there is no opEquals overload.
        eval = DtoStructEquals(op,l,r);
    }
    else
    {
        assert(0 && "Unsupported EqualExp type");
    }

    return new DImValue(type, eval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* PostExp::toElem(IRState* p)
{
    Logger::print("PostExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);
    DValue* r = e2->toElem(p);

    LLValue* val = l->getRVal();
    LLValue* post = 0;

    Type* e1type = e1->type->toBasetype();
    Type* e2type = e2->type->toBasetype();

    if (e1type->isintegral())
    {
        assert(e2type->isintegral());
        LLValue* one = llvm::ConstantInt::get(val->getType(), 1, !e2type->isunsigned());
        if (op == TOKplusplus) {
            post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
        }
        else if (op == TOKminusminus) {
            post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
        }
    }
    else if (e1type->ty == Tpointer)
    {
        assert(e2type->isintegral());
        LLConstant* minusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)-1,true);
        LLConstant* plusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)1,false);
        LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone;
        post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb());
    }
    else if (e1type->isfloating())
    {
        assert(e2type->isfloating());
        LLValue* one = DtoConstFP(e1type, 1.0);
        if (op == TOKplusplus) {
            post = llvm::BinaryOperator::CreateAdd(val,one,"tmp",p->scopebb());
        }
        else if (op == TOKminusminus) {
            post = llvm::BinaryOperator::CreateSub(val,one,"tmp",p->scopebb());
        }
    }
    else
    assert(post);

    DtoStore(post,l->getLVal());

    return new DImValue(type,val);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NewExp::toElem(IRState* p)
{
    Logger::print("NewExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(newtype);
    Type* ntype = newtype->toBasetype();

    // new class
    if (ntype->ty == Tclass) {
        Logger::println("new class");
        return DtoNewClass(loc, (TypeClass*)ntype, this);
    }
    // new dynamic array
    else if (ntype->ty == Tarray)
    {
        Logger::println("new dynamic array: %s", newtype->toChars());
        // get dim
        assert(arguments);
        assert(arguments->dim >= 1);
        if (arguments->dim == 1)
        {
            DValue* sz = ((Expression*)arguments->data[0])->toElem(p);
            // allocate & init
            return DtoNewDynArray(loc, newtype, sz, true);
        }
        else
        {
            size_t ndims = arguments->dim;
            std::vector<DValue*> dims(ndims);
            for (size_t i=0; i<ndims; ++i)
                dims[i] = ((Expression*)arguments->data[i])->toElem(p);
            return DtoNewMulDimDynArray(loc, newtype, &dims[0], ndims, true);
        }
    }
    // new static array
    else if (ntype->ty == Tsarray)
    {
        assert(0);
    }
    // new struct
    else if (ntype->ty == Tstruct)
    {
        Logger::println("new struct on heap: %s\n", newtype->toChars());
        // allocate
        LLValue* mem = DtoNew(newtype);
        // init
        TypeStruct* ts = (TypeStruct*)ntype;
        if (ts->isZeroInit()) {
            DtoAggrZeroInit(mem);
        }
        else {
            assert(ts->sym);
            DtoForceConstInitDsymbol(ts->sym);
            DtoAggrCopy(mem,ts->sym->ir.irStruct->init);
        }
        return new DImValue(type, mem);
    }
    // new basic type
    else
    {
        // allocate
        LLValue* mem = DtoNew(newtype);
        DVarValue tmpvar(newtype, mem);

        // default initialize
        Expression* exp = newtype->defaultInit(loc);
        DValue* iv = exp->toElem(gIR);
        DtoAssign(loc, &tmpvar, iv);

        // return as pointer-to
        return new DImValue(type, mem);
    }

    assert(0);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DeleteExp::toElem(IRState* p)
{
    Logger::print("DeleteExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* dval = e1->toElem(p);
    Type* et = e1->type->toBasetype();

    // simple pointer
    if (et->ty == Tpointer)
    {
        LLValue* rval = dval->getRVal();
        DtoDeleteMemory(rval);
        if (dval->isVar())
            DtoStore(llvm::Constant::getNullValue(rval->getType()), dval->getLVal());
    }
    // class
    else if (et->ty == Tclass)
    {
        bool onstack = false;
        TypeClass* tc = (TypeClass*)et;
        if (tc->sym->isInterfaceDeclaration())
        {
            DtoDeleteInterface(dval->getRVal());
            onstack = true;
        }
        else if (DVarValue* vv = dval->isVar()) {
            if (vv->var && vv->var->onstack) {
                DtoFinalizeClass(dval->getRVal());
                onstack = true;
            }
        }
        if (!onstack) {
            LLValue* rval = dval->getRVal();
            DtoDeleteClass(rval);
        }
        if (dval->isVar()) {
            LLValue* lval = dval->getLVal();
            DtoStore(llvm::Constant::getNullValue(lval->getType()->getContainedType(0)), lval);
        }
    }
    // dyn array
    else if (et->ty == Tarray)
    {
        DtoDeleteArray(dval);
        if (dval->isLVal())
            DtoSetArrayToNull(dval->getLVal());
    }
    // unknown/invalid
    else
    {
        assert(0 && "invalid delete");
    }

    // no value to return
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ArrayLengthExp::toElem(IRState* p)
{
    Logger::print("ArrayLengthExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);
    return new DImValue(type, DtoArrayLen(u));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AssertExp::toElem(IRState* p)
{
    Logger::print("AssertExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    if(!global.params.useAssert)
        return NULL;

    // condition
    DValue* cond = e1->toElem(p);
    Type* condty = e1->type->toBasetype();

    InvariantDeclaration* invdecl;

    // class invariants
    if(
        global.params.useInvariants && 
        condty->ty == Tclass &&
        !((TypeClass*)condty)->sym->isInterfaceDeclaration())
    {
        Logger::print("calling class invariant");
        llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_invariant");
        LLValue* arg = DtoBitCast(cond->getRVal(), fn->getFunctionType()->getParamType(0));
        gIR->CreateCallOrInvoke(fn, arg);
    }
    // struct invariants
    else if(
        global.params.useInvariants && 
        condty->ty == Tpointer && condty->next->ty == Tstruct &&
        (invdecl = ((TypeStruct*)condty->next)->sym->inv) != NULL)
    {
        Logger::print("calling struct invariant");
        DFuncValue invfunc(invdecl, invdecl->ir.irFunc->func, cond->getRVal());
        DtoCallFunction(loc, NULL, &invfunc, NULL);
    }
    else
    {
        // create basic blocks
        llvm::BasicBlock* oldend = p->scopeend();
        llvm::BasicBlock* assertbb = llvm::BasicBlock::Create("assert", p->topfunc(), oldend);
        llvm::BasicBlock* endbb = llvm::BasicBlock::Create("noassert", p->topfunc(), oldend);

        // test condition
        LLValue* condval = DtoBoolean(loc, cond);

        // branch
        llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());

        // call assert runtime functions
        p->scope() = IRScope(assertbb,endbb);
        DtoAssert(&loc, msg ? msg->toElem(p) : NULL);

        // rewrite the scope
        p->scope() = IRScope(endbb,oldend);
    }

    // no meaningful return value
    return NULL;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NotExp::toElem(IRState* p)
{
    Logger::print("NotExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);

    LLValue* b = DtoBoolean(loc, u);

    LLConstant* zero = DtoConstBool(false);
    b = p->ir->CreateICmpEQ(b,zero);

    return new DImValue(type, b);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AndAndExp::toElem(IRState* p)
{
    Logger::print("AndAndExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // allocate a temporary for the final result. failed to come up with a better way :/
    LLValue* resval = 0;
    llvm::BasicBlock* entryblock = &p->topfunc()->front();
    resval = DtoAlloca(LLType::Int1Ty,"andandtmp");

    DValue* u = e1->toElem(p);

    llvm::BasicBlock* oldend = p->scopeend();
    llvm::BasicBlock* andand = llvm::BasicBlock::Create("andand", gIR->topfunc(), oldend);
    llvm::BasicBlock* andandend = llvm::BasicBlock::Create("andandend", gIR->topfunc(), oldend);

    LLValue* ubool = DtoBoolean(loc, u);
    DtoStore(ubool,resval);
    llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb());

    p->scope() = IRScope(andand, andandend);
    DValue* v = e2->toElem(p);

    LLValue* vbool = DtoBoolean(loc, v);
    LLValue* uandvbool = llvm::BinaryOperator::Create(llvm::BinaryOperator::And, ubool, vbool,"tmp",p->scopebb());
    DtoStore(uandvbool,resval);
    llvm::BranchInst::Create(andandend,p->scopebb());

    p->scope() = IRScope(andandend, oldend);

    resval = DtoLoad(resval);
    return new DImValue(type, resval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* OrOrExp::toElem(IRState* p)
{
    Logger::print("OrOrExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // allocate a temporary for the final result. failed to come up with a better way :/
    LLValue* resval = 0;
    llvm::BasicBlock* entryblock = &p->topfunc()->front();
    resval = DtoAlloca(LLType::Int1Ty,"orortmp");

    DValue* u = e1->toElem(p);

    llvm::BasicBlock* oldend = p->scopeend();
    llvm::BasicBlock* oror = llvm::BasicBlock::Create("oror", gIR->topfunc(), oldend);
    llvm::BasicBlock* ororend = llvm::BasicBlock::Create("ororend", gIR->topfunc(), oldend);

    LLValue* ubool = DtoBoolean(loc, u);
    DtoStore(ubool,resval);
    llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());

    p->scope() = IRScope(oror, ororend);
    DValue* v = e2->toElem(p);

    LLValue* vbool = DtoBoolean(loc, v);
    DtoStore(vbool,resval);
    llvm::BranchInst::Create(ororend,p->scopebb());

    p->scope() = IRScope(ororend, oldend);

    resval = new llvm::LoadInst(resval,"tmp",p->scopebb());
    return new DImValue(type, resval);
}

//////////////////////////////////////////////////////////////////////////////////////////

#define BinBitExp(X,Y) \
DValue* X##Exp::toElem(IRState* p) \
{ \
    Logger::print("%sExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \
    LOG_SCOPE; \
    DValue* u = e1->toElem(p); \
    DValue* v = e2->toElem(p); \
    LLValue* x = llvm::BinaryOperator::Create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \
    return new DImValue(type, x); \
} \
\
DValue* X##AssignExp::toElem(IRState* p) \
{ \
    Logger::print("%sAssignExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \
    LOG_SCOPE; \
    DValue* u = e1->toElem(p); \
    DValue* v = e2->toElem(p); \
    LLValue* uval = u->getRVal(); \
    LLValue* vval = v->getRVal(); \
    LLValue* tmp = llvm::BinaryOperator::Create(llvm::Instruction::Y, uval, vval, "tmp", p->scopebb()); \
    DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal()); \
    return u; \
}

BinBitExp(And,And);
BinBitExp(Or,Or);
BinBitExp(Xor,Xor);
BinBitExp(Shl,Shl);
BinBitExp(Ushr,LShr);

DValue* ShrExp::toElem(IRState* p)
{
    Logger::print("ShrExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);
    LLValue* x;
    if (e1->type->isunsigned())
        x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp");
    else
        x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp");
    return new DImValue(type, x);
}

DValue* ShrAssignExp::toElem(IRState* p)
{
    Logger::print("ShrAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;
    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);
    LLValue* uval = u->getRVal();
    LLValue* vval = v->getRVal();
    LLValue* tmp;
    if (e1->type->isunsigned())
        tmp = p->ir->CreateLShr(uval, vval, "tmp");
    else
        tmp = p->ir->CreateAShr(uval, vval, "tmp");
    DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal());
    return u;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* HaltExp::toElem(IRState* p)
{
    Logger::print("HaltExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    // FIXME: DMD inserts a trap here... we probably should as well !?!

#if 1
    DtoAssert(&loc, NULL);
#else
    // call the new (?) trap intrinsic
    p->ir->CreateCall(GET_INTRINSIC_DECL(trap),"");
    new llvm::UnreachableInst(p->scopebb());
#endif

    // this terminated the basicblock, start a new one
    // this is sensible, since someone might goto behind the assert
    // and prevents compiler errors if a terminator follows the assert
    llvm::BasicBlock* oldend = gIR->scopeend();
    llvm::BasicBlock* bb = llvm::BasicBlock::Create("afterhalt", p->topfunc(), oldend);
    p->scope() = IRScope(bb,oldend);

    return 0;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DelegateExp::toElem(IRState* p)
{
    Logger::print("DelegateExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    if(func->isStatic())
        error("can't take delegate of static function %s, it does not require a context ptr", func->toChars());

    const LLPointerType* int8ptrty = getPtrToType(LLType::Int8Ty);

    LLValue* lval = DtoAlloca(DtoType(type), "tmpdelegate");

    DValue* u = e1->toElem(p);
    LLValue* uval;
    if (DFuncValue* f = u->isFunc()) {
        assert(f->func);
        LLValue* contextptr = DtoNestedContext(loc, f->func);
        uval = DtoBitCast(contextptr, getVoidPtrType());
    }
    else {
        DValue* src = u;
        if (ClassDeclaration* cd = u->getType()->isClassHandle())
        {
            Logger::println("context type is class handle");
            if (cd->isInterfaceDeclaration())
            {
                Logger::println("context type is interface");
                src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type);
            }
        }
        uval = src->getRVal();
    }

    if (Logger::enabled())
        Logger::cout() << "context = " << *uval << '\n';

    LLValue* context = DtoGEPi(lval,0,0);
    LLValue* castcontext = DtoBitCast(uval, int8ptrty);
    DtoStore(castcontext, context);

    LLValue* fptr = DtoGEPi(lval,0,1);

    Logger::println("func: '%s'", func->toPrettyChars());

    LLValue* castfptr;
    if (func->isVirtual())
        castfptr = DtoVirtualFunctionPointer(u, func);
    else if (func->isAbstract())
        assert(0 && "TODO delegate to abstract method");
    else if (func->toParent()->isInterfaceDeclaration())
        assert(0 && "TODO delegate to interface method");
    else
    {
        DtoForceDeclareDsymbol(func);
        castfptr = func->ir.irFunc->func;
    }

    castfptr = DtoBitCast(castfptr, fptr->getType()->getContainedType(0));
    DtoStore(castfptr, fptr);

    return new DImValue(type, lval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* IdentityExp::toElem(IRState* p)
{
    Logger::print("IdentityExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);

    Type* t1 = e1->type->toBasetype();

    // handle dynarray specially
    if (t1->ty == Tarray)
        return new DImValue(type, DtoDynArrayIs(op,u,v));
    // also structs
    else if (t1->ty == Tstruct)
        return new DImValue(type, DtoStructEquals(op,u,v));

    // FIXME this stuff isn't pretty
    LLValue* l = u->getRVal();
    LLValue* r = v->getRVal();
    LLValue* eval = 0;

    if (t1->ty == Tdelegate) {
        if (v->isNull()) {
            r = NULL;
        }
        else {
            assert(l->getType() == r->getType());
        }
        eval = DtoDelegateEquals(op,l,r);
    }
    else if (t1->isfloating())
    {
        eval = (op == TOKidentity)
        ?   p->ir->CreateFCmpOEQ(l,r,"tmp")
        :   p->ir->CreateFCmpONE(l,r,"tmp");
    }
    else if (t1->ty == Tpointer || t1->ty == Tclass)
    {
        if (l->getType() != r->getType()) {
            if (v->isNull())
                r = llvm::ConstantPointerNull::get(isaPointer(l->getType()));
            else
                r = DtoBitCast(r, l->getType());
        }
        eval = (op == TOKidentity)
        ?   p->ir->CreateICmpEQ(l,r,"tmp")
        :   p->ir->CreateICmpNE(l,r,"tmp");
    }
    else {
        assert(l->getType() == r->getType());
        eval = (op == TOKidentity)
        ?   p->ir->CreateICmpEQ(l,r,"tmp")
        :   p->ir->CreateICmpNE(l,r,"tmp");
    }
    return new DImValue(type, eval);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CommaExp::toElem(IRState* p)
{
    Logger::print("CommaExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);
    DValue* v = e2->toElem(p);
    assert(e2->type == type);
    return v;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CondExp::toElem(IRState* p)
{
    Logger::print("CondExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* dtype = type->toBasetype();
    const LLType* resty = DtoType(dtype);

    // allocate a temporary for the final result. failed to come up with a better way :/
    llvm::BasicBlock* entryblock = &p->topfunc()->front();
    LLValue* resval = DtoAlloca(resty,"condtmp");
    DVarValue* dvv = new DVarValue(type, resval);

    llvm::BasicBlock* oldend = p->scopeend();
    llvm::BasicBlock* condtrue = llvm::BasicBlock::Create("condtrue", gIR->topfunc(), oldend);
    llvm::BasicBlock* condfalse = llvm::BasicBlock::Create("condfalse", gIR->topfunc(), oldend);
    llvm::BasicBlock* condend = llvm::BasicBlock::Create("condend", gIR->topfunc(), oldend);

    DValue* c = econd->toElem(p);
    LLValue* cond_val = DtoBoolean(loc, c);
    llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());

    p->scope() = IRScope(condtrue, condfalse);
    DValue* u = e1->toElem(p);
    DtoAssign(loc, dvv, u);
    llvm::BranchInst::Create(condend,p->scopebb());

    p->scope() = IRScope(condfalse, condend);
    DValue* v = e2->toElem(p);
    DtoAssign(loc, dvv, v);
    llvm::BranchInst::Create(condend,p->scopebb());

    p->scope() = IRScope(condend, oldend);
    return dvv;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ComExp::toElem(IRState* p)
{
    Logger::print("ComExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* u = e1->toElem(p);

    LLValue* value = u->getRVal();
    LLValue* minusone = llvm::ConstantInt::get(value->getType(), -1, true);
    value = llvm::BinaryOperator::Create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb());

    return new DImValue(type, value);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* NegExp::toElem(IRState* p)
{
    Logger::print("NegExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);

    if (type->iscomplex()) {
        return DtoComplexNeg(loc, type, l);
    }

    LLValue* val = l->getRVal();

    val = gIR->ir->CreateNeg(val,"negval");
    return new DImValue(type, val);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CatExp::toElem(IRState* p)
{
    Logger::print("CatExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    Type* t = type->toBasetype();

    bool arrNarr = e1->type->toBasetype() == e2->type->toBasetype();

    // array ~ array
    if (arrNarr)
    {
        return DtoCatArrays(type, e1, e2);
    }
    // array ~ element
    // element ~ array
    else
    {
        return DtoCatArrayElement(type, e1, e2);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* CatAssignExp::toElem(IRState* p)
{
    Logger::print("CatAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* l = e1->toElem(p);

    Type* e1type = e1->type->toBasetype();
    Type* elemtype = e1type->next->toBasetype();
    Type* e2type = e2->type->toBasetype();

    if (e2type == elemtype) {
        DSliceValue* slice = DtoCatAssignElement(l,e2);
        DtoAssign(loc, l, slice);
    }
    else if (e1type == e2type) {
        DSliceValue* slice = DtoCatAssignArray(l,e2);
        DtoAssign(loc, l, slice);
    }
    else
        assert(0 && "only one element at a time right now");

    return l;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* FuncExp::toElem(IRState* p)
{
    Logger::print("FuncExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(fd);

    if (fd->isNested()) Logger::println("nested");
    Logger::println("kind = %s\n", fd->kind());

    DtoForceDefineDsymbol(fd);
    assert(fd->ir.irFunc->func);

    LLValue *lval, *fptr;
    if(fd->tok == TOKdelegate) {
        const LLType* dgty = DtoType(type);
        lval = DtoAlloca(dgty,"dgstorage");

        LLValue* context = DtoGEPi(lval,0,0);
        LLValue* cval;
        IrFunction* irfn = p->func();
        if (irfn->nestedVar)
            cval = irfn->nestedVar;
        else if (irfn->nestArg)
            cval = irfn->nestArg;
        else
            cval = getNullPtr(getVoidPtrType());
        cval = DtoBitCast(cval, context->getType()->getContainedType(0));
        DtoStore(cval, context);

        fptr = DtoGEPi(lval,0,1,"tmp",p->scopebb());

        LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, fptr->getType()->getContainedType(0));
        DtoStore(castfptr, fptr);

        return new DVarValue(type, lval);

    } else if(fd->tok == TOKfunction) {
        return new DImValue(type, fd->ir.irFunc->func);
    }

    assert(0 && "fd->tok must be TOKfunction or TOKdelegate");
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* ArrayLiteralExp::toElem(IRState* p)
{
    Logger::print("ArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // D types
    Type* arrayType = type->toBasetype();
    Type* elemType = arrayType->nextOf()->toBasetype();

    // is dynamic ?
    bool dyn = (arrayType->ty == Tarray);
    // length
    size_t len = elements->dim;

    // llvm target type
    const LLType* llType = DtoType(arrayType);
    if (Logger::enabled())
        Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";

    // llvm storage type
    const LLType* llElemType = DtoTypeNotVoid(elemType);
    const LLType* llStoType = LLArrayType::get(llElemType, len);
    if (Logger::enabled())
        Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";

    // don't allocate storage for zero length dynamic array literals
    if (dyn && len == 0)
    {
        // dmd seems to just make them null...
        return new DSliceValue(type, DtoConstSize_t(0), getNullPtr(getPtrToType(llElemType)));
    }

    // dst pointer
    LLValue* dstMem;
    DSliceValue* dynSlice = NULL;
    if(dyn)
    {
        dynSlice = DtoNewDynArray(loc, arrayType, new DConstValue(Type::tsize_t, DtoConstSize_t(len)), false);
        dstMem = dynSlice->ptr;
    }
    else
        dstMem = DtoAlloca(llStoType, "arrayliteral");

    // store elements
    for (size_t i=0; i<len; ++i)
    {
        Expression* expr = (Expression*)elements->data[i];
        LLValue* elemAddr;
        if(dyn)
            elemAddr = DtoGEPi1(dstMem, i, "tmp", p->scopebb());
        else
            elemAddr = DtoGEPi(dstMem,0,i,"tmp",p->scopebb());

        // emulate assignment
        DVarValue* vv = new DVarValue(expr->type, elemAddr);
        DValue* e = expr->toElem(p);
        DtoAssign(loc, vv, e);
    }

    // return storage directly ?
    if (!dyn)
        return new DImValue(type, dstMem);

    // return slice
    return dynSlice;
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* ArrayLiteralExp::toConstElem(IRState* p)
{
    Logger::print("ArrayLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    // extract D types
    Type* bt = type->toBasetype();
    Type* elemt = bt->next;

    // build llvm array type
    const LLArrayType* arrtype = LLArrayType::get(DtoType(elemt), elements->dim);

    // dynamic arrays can occur here as well ...
    bool dyn = (bt->ty == Tarray);

    // build the initializer
    std::vector<LLConstant*> vals(elements->dim, NULL);
    for (unsigned i=0; i<elements->dim; ++i)
    {
        Expression* expr = (Expression*)elements->data[i];
        vals[i] = expr->toConstElem(p);
    }

    // build the constant array initializer
    LLConstant* initval = llvm::ConstantArray::get(arrtype, vals);

    // if static array, we're done
    if (!dyn)
        return initval;

    // for dynamic arrays we need to put the initializer in a global, and build a constant dynamic array reference with the .ptr field pointing into this global
    LLConstant* globalstore = new LLGlobalVariable(arrtype, true, LLGlobalValue::InternalLinkage, initval, ".dynarrayStorage", p->module);
    LLConstant* idxs[2] = { DtoConstUint(0), DtoConstUint(0) };
    LLConstant* globalstorePtr = llvm::ConstantExpr::getGetElementPtr(globalstore, idxs, 2);

    return DtoConstSlice(DtoConstSize_t(elements->dim), globalstorePtr);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* StructLiteralExp::toElem(IRState* p)
{
    Logger::print("StructLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    const LLType* llt = DtoType(type);

    LLValue* mem = 0;

    LLValue* sptr = DtoAlloca(llt,"tmpstructliteral");

    // default init the struct to take care of padding
    // and unspecified members
    TypeStruct* ts = (TypeStruct*)type->toBasetype();
    assert(ts->sym);
    DtoForceConstInitDsymbol(ts->sym);
    assert(ts->sym->ir.irStruct->init);
    DtoAggrCopy(sptr, ts->sym->ir.irStruct->init);

    // num elements in literal
    unsigned n = elements->dim;

    // unions might have different types for each literal
    if (sd->ir.irStruct->hasUnions) {
        // build the type of the literal
        std::vector<const LLType*> tys;
        for (unsigned i=0; i<n; ++i) {
            Expression* vx = (Expression*)elements->data[i];
            if (!vx) continue;
            tys.push_back(DtoType(vx->type));
        }
        const LLStructType* t = LLStructType::get(tys, sd->ir.irStruct->packed);
        if (t != llt) {
            if (getABITypeSize(t) != getABITypeSize(llt)) {
                if (Logger::enabled())
                    Logger::cout() << "got size " << getABITypeSize(t) << ", expected " << getABITypeSize(llt) << '\n';
                assert(0 && "type size mismatch");
            }
            sptr = DtoBitCast(sptr, getPtrToType(t));
            if (Logger::enabled())
                Logger::cout() << "sptr type is now: " << *t << '\n';
        }
    }

    // build
    unsigned j = 0;
    for (unsigned i=0; i<n; ++i)
    {
        Expression* vx = (Expression*)elements->data[i];
        if (!vx) continue;

        if (Logger::enabled())
            Logger::cout() << "getting index " << j << " of " << *sptr << '\n';
        LLValue* arrptr = DtoGEPi(sptr,0,j);
        DValue* darrptr = new DVarValue(vx->type, arrptr);

        DValue* ve = vx->toElem(p);
        DtoAssign(loc, darrptr, ve);

        j++;
    }

    return new DImValue(type, sptr);
}

//////////////////////////////////////////////////////////////////////////////////////////

LLConstant* StructLiteralExp::toConstElem(IRState* p)
{
    Logger::print("StructLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    unsigned n = elements->dim;
    std::vector<LLConstant*> vals(n, NULL);

    for (unsigned i=0; i<n; ++i)
    {
        Expression* vx = (Expression*)elements->data[i];
        vals[i] = vx->toConstElem(p);
    }

    assert(type->toBasetype()->ty == Tstruct);
    const LLType* t = DtoType(type);
    const LLStructType* st = isaStruct(t);
    return llvm::ConstantStruct::get(st,vals);
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* InExp::toElem(IRState* p)
{
    Logger::print("InExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    DValue* key = e1->toElem(p);
    DValue* aa = e2->toElem(p);

    return DtoAAIn(loc, type, aa, key);
}

DValue* RemoveExp::toElem(IRState* p)
{
    Logger::print("RemoveExp::toElem: %s\n", toChars());
    LOG_SCOPE;

    DValue* aa = e1->toElem(p);
    DValue* key = e2->toElem(p);

    DtoAARemove(loc, aa, key);

    return NULL; // does not produce anything useful
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* AssocArrayLiteralExp::toElem(IRState* p)
{
    Logger::print("AssocArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
    LOG_SCOPE;

    assert(keys);
    assert(values);
    assert(keys->dim == values->dim);

    Type* aatype = type->toBasetype();
    Type* vtype = aatype->next;
    const LLType* aalltype = DtoType(type);

    // it should be possible to avoid the temporary in some cases
    LLValue* tmp = DtoAlloca(aalltype,"aaliteral");
    DValue* aa = new DVarValue(type, tmp);
    DtoStore(LLConstant::getNullValue(aalltype), tmp);

    const size_t n = keys->dim;
    for (size_t i=0; i<n; ++i)
    {
        Expression* ekey = (Expression*)keys->data[i];
        Expression* eval = (Expression*)values->data[i];

        Logger::println("(%u) aa[%s] = %s", i, ekey->toChars(), eval->toChars());

        // index
        DValue* key = ekey->toElem(p);
        DValue* mem = DtoAAIndex(loc, vtype, aa, key, true);

        // store
        DValue* val = eval->toElem(p);
        DtoAssign(loc, mem, val);
    }

    return aa;
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* GEPExp::toElem(IRState* p)
{
    // this should be good enough for now!
    DValue* val = e1->toElem(p);
    assert(val->isLVal());
    LLValue* v = DtoGEPi(val->getLVal(), 0, index);
    return new DVarValue(type, DtoBitCast(v, getPtrToType(DtoType(type))));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* BoolExp::toElem(IRState* p)
{
    return new DImValue(type, DtoBoolean(loc, e1->toElem(p)));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DotTypeExp::toElem(IRState* p)
{
    Type* t = sym->getType();
    assert(t);
    return e1->toElem(p);
}

//////////////////////////////////////////////////////////////////////////////////////////

#define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; }
STUB(Expression);
STUB(TypeDotIdExp);
STUB(ScopeExp);
STUB(TypeExp);
STUB(TupleExp);

#define CONSTSTUB(x) LLConstant* x::toConstElem(IRState * p) {error("const Exp type "#x" not implemented: '%s' type: '%s'", toChars(), type->toChars()); fatal(); return NULL; }
CONSTSTUB(Expression);
CONSTSTUB(AssocArrayLiteralExp);

unsigned Type::totym() { return 0; }

type * Type::toCtype()
{
    assert(0);
    return 0;
}

type * Type::toCParamtype()
{
    assert(0);
    return 0;
}
Symbol * Type::toSymbol()
{
    assert(0);
    return 0;
}

type *
TypeTypedef::toCtype()
{
    assert(0);
    return 0;
}

type *
TypeTypedef::toCParamtype()
{
    assert(0);
    return 0;
}

void
TypedefDeclaration::toDebug()
{
    assert(0);
}


type *
TypeEnum::toCtype()
{
    assert(0);
    return 0;
}

type *
TypeStruct::toCtype()
{
    assert(0);
    return 0;
}

void
StructDeclaration::toDebug()
{
    assert(0);
}

Symbol * TypeClass::toSymbol()
{
    assert(0);
    return 0;
}

unsigned TypeFunction::totym()
{
    assert(0);
    return 0;
}

type * TypeFunction::toCtype()
{
    assert(0);
    return 0;
}

type * TypeSArray::toCtype()
{
    assert(0);
    return 0;
}

type *TypeSArray::toCParamtype()
{
    assert(0);
    return 0;
}

type * TypeDArray::toCtype()
{
    assert(0);
    return 0;
}

type * TypeAArray::toCtype()
{
    assert(0);
    return 0;
}

type * TypePointer::toCtype()
{
    assert(0);
    return 0;
}

type * TypeDelegate::toCtype()
{
    assert(0);
    return 0;
}

type * TypeClass::toCtype()
{
    assert(0);
    return 0;
}

void ClassDeclaration::toDebug()
{
    assert(0);
}

//////////////////////////////////////////////////////////////////////////////

void
EnumDeclaration::toDebug()
{
    assert(0);
}

int Dsymbol::cvMember(unsigned char*)
{
    assert(0);
    return 0;
}
int EnumDeclaration::cvMember(unsigned char*)
{
    assert(0);
    return 0;
}
int FuncDeclaration::cvMember(unsigned char*)
{
    assert(0);
    return 0;
}
int VarDeclaration::cvMember(unsigned char*)
{
    assert(0);
    return 0;
}
int TypedefDeclaration::cvMember(unsigned char*)
{
    assert(0);
    return 0;
}

void obj_includelib(const char* lib)
{
    char *arg = (char *)mem.malloc(64);
    strcpy(arg, "-l");
    strncat(arg, lib, 64);
    global.params.linkswitches->push(arg);
}

void backend_init()
{
    // now lazily loaded
    //LLVM_D_InitRuntime();
}

void backend_term()
{
    LLVM_D_FreeRuntime();
}