view gen/functions.cpp @ 454:283d113d4753

Added generation of the llvm 'sret' parameter attribute where applicable. Fixed some wrong argument handling code when setting parameter attributes. Updated the tango unittest script in the tango patch, does not work yet, all modules don't compile...
author Tomas Lindquist Olsen <tomas.l.olsen@gmail.com>
date Sat, 02 Aug 2008 02:54:57 +0200
parents 30ef3c7bddca
children d3d3519b72e8
line wrap: on
line source

#include "gen/llvm.h"
#include "llvm/Support/CFG.h"
#include "llvm/Intrinsics.h"

#include "mtype.h"
#include "aggregate.h"
#include "init.h"
#include "declaration.h"
#include "template.h"
#include "module.h"
#include "statement.h"

#include "gen/irstate.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/logger.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/classes.h"
#include "gen/dvalue.h"

const llvm::FunctionType* DtoFunctionType(Type* type, const LLType* thistype, bool ismain)
{
    assert(type->ty == Tfunction);
    TypeFunction* f = (TypeFunction*)type;

    if (type->ir.type != NULL) {
        return llvm::cast<llvm::FunctionType>(type->ir.type->get());
    }

    bool typesafeVararg = false;
    bool arrayVararg = false;
    if (f->linkage == LINKd)
    {
        if (f->varargs == 1)
            typesafeVararg = true;
        else if (f->varargs == 2)
            arrayVararg = true;
    }

    // return value type
    const LLType* rettype;
    const LLType* actualRettype;
    Type* rt = f->next;
    bool retinptr = false;
    bool usesthis = false;

    // parameter types
    std::vector<const LLType*> paramvec;

    if (ismain)
    {
        rettype = LLType::Int32Ty;
        actualRettype = rettype;
        if (Argument::dim(f->parameters) == 0)
        {
        const LLType* arrTy = DtoArrayType(LLType::Int8Ty);
        const LLType* arrArrTy = DtoArrayType(arrTy);
        paramvec.push_back(getPtrToType(arrArrTy));
        }
    }
    else{
        assert(rt);
        if (DtoIsReturnedInArg(rt)) {
            rettype = getPtrToType(DtoType(rt));
            actualRettype = LLType::VoidTy;
            f->llvmRetInPtr = retinptr = true;
        }
        else {
            rettype = DtoType(rt);
            actualRettype = rettype;
        }

        if (unsigned ea = DtoShouldExtend(rt))
        {
            f->llvmRetAttrs |= ea;
        }
    }

    if (retinptr) {
        //Logger::cout() << "returning through pointer parameter: " << *rettype << '\n';
        paramvec.push_back(rettype);
    }

    if (thistype) {
        paramvec.push_back(thistype);
        usesthis = true;
    }

    if (typesafeVararg) {
        ClassDeclaration* ti = Type::typeinfo;
        ti->toObjFile(0); // TODO: multiobj
        DtoForceConstInitDsymbol(ti);
        assert(ti->ir.irStruct->constInit);
        std::vector<const LLType*> types;
        types.push_back(DtoSize_t());
        types.push_back(getPtrToType(getPtrToType(ti->ir.irStruct->constInit->getType())));
        const LLType* t1 = llvm::StructType::get(types);
        paramvec.push_back(getPtrToType(t1));
        paramvec.push_back(getPtrToType(LLType::Int8Ty));
    }
    else if (arrayVararg)
    {
        // do nothing?
    }

    size_t n = Argument::dim(f->parameters);

    for (int i=0; i < n; ++i) {
        Argument* arg = Argument::getNth(f->parameters, i);
        // ensure scalar
        Type* argT = DtoDType(arg->type);
        assert(argT);

        bool refOrOut = ((arg->storageClass & STCref) || (arg->storageClass & STCout));

        const LLType* at = DtoType(argT);
        if (isaStruct(at)) {
            Logger::println("struct param");
            paramvec.push_back(getPtrToType(at));
            if (!refOrOut)
                arg->llvmAttrs |= llvm::ParamAttr::ByVal;
        }
        else if (isaArray(at)) {
            // static array are passed by reference
            Logger::println("sarray param");
            assert(argT->ty == Tsarray);
            paramvec.push_back(getPtrToType(at));
        }
        else if (llvm::isa<llvm::OpaqueType>(at)) {
            Logger::println("opaque param");
            assert(argT->ty == Tstruct || argT->ty == Tclass);
            paramvec.push_back(getPtrToType(at));
        }
        else {
            if (refOrOut) {
                Logger::println("by ref param");
                at = getPtrToType(at);
            }
            else {
                Logger::println("in param");
                if (unsigned ea = DtoShouldExtend(argT))
                {
                    arg->llvmAttrs |= ea;
                }
            }
            paramvec.push_back(at);
        }

        // handle lazy args
        if (arg->storageClass & STClazy)
        {
            Logger::cout() << "for lazy got: " << *paramvec.back() << '\n';
            TypeFunction *ltf = new TypeFunction(NULL, arg->type, 0, LINKd);
            TypeDelegate *ltd = new TypeDelegate(ltf);
            at = getPtrToType(DtoType(ltd));
            Logger::cout() << "lazy updated to: " << *at << '\n';
            paramvec.back() = at;
            // lazy doesn't need byval as the delegate is not visible to the user
        }
    }

    // construct function type
    bool isvararg = !(typesafeVararg || arrayVararg) && f->varargs;
    llvm::FunctionType* functype = llvm::FunctionType::get(actualRettype, paramvec, isvararg);

    f->llvmRetInPtr = retinptr;
    f->llvmUsesThis = usesthis;

    f->ir.type = new llvm::PATypeHolder(functype);

    return functype;
}

//////////////////////////////////////////////////////////////////////////////////////////

static const llvm::FunctionType* DtoVaFunctionType(FuncDeclaration* fdecl)
{
    // type has already been resolved
    if (fdecl->type->ir.type != 0) {
        return llvm::cast<llvm::FunctionType>(fdecl->type->ir.type->get());
    }

    TypeFunction* f = (TypeFunction*)fdecl->type;
    const llvm::FunctionType* fty = 0;

    if (fdecl->llvmInternal == LLVMva_start)
        fty = GET_INTRINSIC_DECL(vastart)->getFunctionType();
    else if (fdecl->llvmInternal == LLVMva_copy)
        fty = GET_INTRINSIC_DECL(vacopy)->getFunctionType();
    else if (fdecl->llvmInternal == LLVMva_end)
        fty = GET_INTRINSIC_DECL(vaend)->getFunctionType();
    assert(fty);

    f->ir.type = new llvm::PATypeHolder(fty);
    return fty;
}

//////////////////////////////////////////////////////////////////////////////////////////

const llvm::FunctionType* DtoFunctionType(FuncDeclaration* fdecl)
{
    // handle for C vararg intrinsics
    if (fdecl->isVaIntrinsic())
        return DtoVaFunctionType(fdecl);

    // type has already been resolved
    if (fdecl->type->ir.type != 0)
        return llvm::cast<llvm::FunctionType>(fdecl->type->ir.type->get());

    const LLType* thisty = NULL;
    if (fdecl->needThis()) {
        if (AggregateDeclaration* ad = fdecl->isMember2()) {
            Logger::println("isMember = this is: %s", ad->type->toChars());
            thisty = DtoType(ad->type);
            //Logger::cout() << "this llvm type: " << *thisty << '\n';
            if (isaStruct(thisty) || (!gIR->structs.empty() && thisty == gIR->topstruct()->recty.get()))
                thisty = getPtrToType(thisty);
        }
        else {
            Logger::println("chars: %s type: %s kind: %s", fdecl->toChars(), fdecl->type->toChars(), fdecl->kind());
            assert(0);
        }
    }
    else if (fdecl->isNested()) {
        thisty = getPtrToType(LLType::Int8Ty);
    }

    const llvm::FunctionType* functype = DtoFunctionType(fdecl->type, thisty, fdecl->isMain());

    return functype;
}

//////////////////////////////////////////////////////////////////////////////////////////

static llvm::Function* DtoDeclareVaFunction(FuncDeclaration* fdecl)
{
    TypeFunction* f = (TypeFunction*)DtoDType(fdecl->type);
    const llvm::FunctionType* fty = DtoVaFunctionType(fdecl);
    llvm::Function* func = 0;

    if (fdecl->llvmInternal == LLVMva_start)
        func = GET_INTRINSIC_DECL(vastart);
    else if (fdecl->llvmInternal == LLVMva_copy)
        func = GET_INTRINSIC_DECL(vacopy);
    else if (fdecl->llvmInternal == LLVMva_end)
        func = GET_INTRINSIC_DECL(vaend);
    assert(func);

    fdecl->ir.irFunc->func = func;
    return func;
}

//////////////////////////////////////////////////////////////////////////////////////////

void DtoResolveFunction(FuncDeclaration* fdecl)
{
    if (!global.params.useUnitTests && fdecl->isUnitTestDeclaration()) {
        return; // ignore declaration completely
    }

    // is imported and we don't have access?
    if (fdecl->getModule() != gIR->dmodule)
    {
        if (fdecl->prot() == PROTprivate)
            return;
    }

    if (fdecl->ir.resolved) return;
    fdecl->ir.resolved = true;

    Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
    LOG_SCOPE;

    if (fdecl->parent)
    if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
    {
        TemplateDeclaration* tempdecl = tinst->tempdecl;
        if (tempdecl->llvmInternal == LLVMva_arg)
        {
            Logger::println("magic va_arg found");
            fdecl->llvmInternal = LLVMva_arg;
            fdecl->ir.declared = true;
            fdecl->ir.initialized = true;
            fdecl->ir.defined = true;
            return; // this gets mapped to an instruction so a declaration makes no sence
        }
        else if (tempdecl->llvmInternal == LLVMva_start)
        {
            Logger::println("magic va_start found");
            fdecl->llvmInternal = LLVMva_start;
        }
    }

    DtoFunctionType(fdecl);

    // queue declaration
    if (!fdecl->isAbstract())
        gIR->declareList.push_back(fdecl);
}

//////////////////////////////////////////////////////////////////////////////////////////

static void set_param_attrs(TypeFunction* f, llvm::Function* func, FuncDeclaration* fdecl)
{
    int llidx = 1;
    if (f->llvmRetInPtr) ++llidx;
    if (f->llvmUsesThis) ++llidx;
    if (f->linkage == LINKd && f->varargs == 1)
        llidx += 2;

    int funcNumArgs = func->getArgumentList().size();
    std::vector<llvm::ParamAttrsWithIndex> attrs;
    int k = 0;

    llvm::ParamAttrsWithIndex PAWI;

    // set return value attrs if any
    if (f->llvmRetAttrs)
    {
        PAWI.Index = 0;
        PAWI.Attrs = f->llvmRetAttrs;
        attrs.push_back(PAWI);
    }

    // set sret param
    if (f->llvmRetInPtr)
    {
        PAWI.Index = 1;
        PAWI.Attrs = llvm::ParamAttr::StructRet;
        attrs.push_back(PAWI);
    }

    // set byval attrs on implicit main arg
    if (fdecl->isMain() && Argument::dim(f->parameters) == 0)
    {
        PAWI.Index = llidx;
        PAWI.Attrs = llvm::ParamAttr::ByVal;
        attrs.push_back(PAWI);
        llidx++;
    }

    // set attrs on the rest of the arguments
    for (; llidx <= funcNumArgs && Argument::dim(f->parameters) > k; ++llidx,++k)
    {
        Argument* fnarg = Argument::getNth(f->parameters, k);
        assert(fnarg);

        PAWI.Index = llidx;
        PAWI.Attrs = fnarg->llvmAttrs;

        if (PAWI.Attrs)
            attrs.push_back(PAWI);
    }

    llvm::PAListPtr palist = llvm::PAListPtr::get(attrs.begin(), attrs.end());
    func->setParamAttrs(palist);
}

//////////////////////////////////////////////////////////////////////////////////////////

void DtoDeclareFunction(FuncDeclaration* fdecl)
{
    if (fdecl->ir.declared) return;
    fdecl->ir.declared = true;

    Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
    LOG_SCOPE;

    assert(!fdecl->isAbstract());

    // intrinsic sanity check
    if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
        error(fdecl->loc, "intrinsics cannot have function bodies");
        fatal();
    }

    // get TypeFunction*
    Type* t = DtoDType(fdecl->type);
    TypeFunction* f = (TypeFunction*)t;

    bool declareOnly = false;
    bool templInst = fdecl->parent && DtoIsTemplateInstance(fdecl->parent);
    if (!templInst && fdecl->getModule() != gIR->dmodule)
    {
        Logger::println("not template instance, and not in this module. declare only!");
        Logger::println("current module: %s", gIR->dmodule->ident->toChars());
        if(fdecl->getModule())
            Logger::println("func module: %s", fdecl->getModule()->ident->toChars());
        else {
            Logger::println("func not in a module, is runtime");
        }
        declareOnly = true;
    }
    else if (fdecl->llvmInternal == LLVMva_start)
        declareOnly = true;

    if (!fdecl->ir.irFunc) {
        fdecl->ir.irFunc = new IrFunction(fdecl);
    }

    // mangled name
    const char* mangled_name;
    if (fdecl->llvmInternal == LLVMintrinsic)
        mangled_name = fdecl->intrinsicName.c_str();
    else
        mangled_name = fdecl->mangle();

    llvm::Function* vafunc = 0;
    if (fdecl->isVaIntrinsic())
        vafunc = DtoDeclareVaFunction(fdecl);

    // construct function
    const llvm::FunctionType* functype = DtoFunctionType(fdecl);
    llvm::Function* func = vafunc ? vafunc : gIR->module->getFunction(mangled_name);
    if (!func)
        func = llvm::Function::Create(functype, DtoLinkage(fdecl), mangled_name, gIR->module);
    else
        assert(func->getFunctionType() == functype);

    // add func to IRFunc
    fdecl->ir.irFunc->func = func;

    // calling convention
    if (!vafunc && fdecl->llvmInternal != LLVMintrinsic)
        func->setCallingConv(DtoCallingConv(f->linkage));
    else // fall back to C, it should be the right thing to do
        func->setCallingConv(llvm::CallingConv::C);

    fdecl->ir.irFunc->func = func;
    assert(llvm::isa<llvm::FunctionType>(f->ir.type->get()));

    // parameter attributes
    if (!fdecl->isIntrinsic()) {
        set_param_attrs(f, func, fdecl);
    }

    // main
    if (fdecl->isMain()) {
        gIR->mainFunc = func;
    }

    // static ctor
    if (fdecl->isStaticCtorDeclaration() && fdecl->getModule() == gIR->dmodule) {
        gIR->ctors.push_back(fdecl);
    }
    // static dtor
    else if (fdecl->isStaticDtorDeclaration() && fdecl->getModule() == gIR->dmodule) {
        gIR->dtors.push_back(fdecl);
    }

    // we never reference parameters of function prototypes
    if (!declareOnly)
    {
        // name parameters
        llvm::Function::arg_iterator iarg = func->arg_begin();
        int k = 0;
        if (f->llvmRetInPtr) {
            iarg->setName("retval");
            fdecl->ir.irFunc->retArg = iarg;
            ++iarg;
        }
        if (f->llvmUsesThis) {
            iarg->setName(fdecl->isNested()?".context":"this");
            fdecl->ir.irFunc->thisVar = iarg;
            assert(fdecl->ir.irFunc->thisVar);
            ++iarg;
        }

        if (f->linkage == LINKd && f->varargs == 1) {
            iarg->setName("_arguments");
            fdecl->ir.irFunc->_arguments = iarg;
            ++iarg;
            iarg->setName("_argptr");
            fdecl->ir.irFunc->_argptr = iarg;
            ++iarg;
        }

        for (; iarg != func->arg_end(); ++iarg)
        {
            if (fdecl->parameters && fdecl->parameters->dim > k)
            {
                Dsymbol* argsym = (Dsymbol*)fdecl->parameters->data[k++];
                VarDeclaration* argvd = argsym->isVarDeclaration();
                assert(argvd);
                assert(!argvd->ir.irLocal);
                argvd->ir.irLocal = new IrLocal(argvd);
                argvd->ir.irLocal->value = iarg;
                iarg->setName(argvd->ident->toChars());
            }
            else
            {
                iarg->setName("unnamed");
            }
        }
    }

    if (fdecl->isUnitTestDeclaration())
        gIR->unitTests.push_back(fdecl);

    if (!declareOnly)
        gIR->defineList.push_back(fdecl);
    else
        assert(func->getLinkage() != llvm::GlobalValue::InternalLinkage);

    Logger::cout() << "func decl: " << *func << '\n';
}

//////////////////////////////////////////////////////////////////////////////////////////

void DtoDefineFunc(FuncDeclaration* fd)
{
    if (fd->ir.defined) return;
    fd->ir.defined = true;

    assert(fd->ir.declared);

    Logger::println("DtoDefineFunc(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
    LOG_SCOPE;

    // debug info
    if (global.params.symdebug) {
        Module* mo = fd->getModule();
        fd->ir.irFunc->dwarfSubProg = DtoDwarfSubProgram(fd);
    }

    Type* t = DtoDType(fd->type);
    TypeFunction* f = (TypeFunction*)t;
    assert(f->ir.type);

    llvm::Function* func = fd->ir.irFunc->func;
    const llvm::FunctionType* functype = func->getFunctionType();

    // only members of the current module or template instances maybe be defined
    if (!(fd->getModule() == gIR->dmodule || DtoIsTemplateInstance(fd->parent)))
        return;

    // set module owner
    fd->ir.DModule = gIR->dmodule;

    // is there a body?
    if (fd->fbody == NULL)
        return;

    Logger::println("Doing function body for: %s", fd->toChars());
    assert(fd->ir.irFunc);
    gIR->functions.push_back(fd->ir.irFunc);

    if (fd->isMain())
        gIR->emitMain = true;

    std::string entryname("entry_");
    entryname.append(fd->toPrettyChars());

    llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(entryname,func);
    llvm::BasicBlock* endbb = llvm::BasicBlock::Create("endentry",func);

    //assert(gIR->scopes.empty());
    gIR->scopes.push_back(IRScope(beginbb, endbb));

    // create alloca point
    llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::Int32Ty, "alloca point", beginbb);
    gIR->func()->allocapoint = allocaPoint;

    // debug info - after all allocas, but before any llvm.dbg.declare etc
    if (global.params.symdebug) DtoDwarfFuncStart(fd);

    // need result variable? (not nested)
    if (fd->vresult && !fd->vresult->nestedref) {
        Logger::println("non-nested vresult value");
        fd->vresult->ir.irLocal = new IrLocal(fd->vresult);
        fd->vresult->ir.irLocal->value = new llvm::AllocaInst(DtoType(fd->vresult->type),"function_vresult",allocaPoint);
    }

    // give 'this' argument debug info (and storage)
    if (fd->needThis() && global.params.symdebug)
    {
        LLValue** thisvar = &fd->ir.irFunc->thisVar;
        assert(*thisvar);
        LLValue* thismem = new llvm::AllocaInst((*thisvar)->getType(), "newthis", allocaPoint);
        DtoDwarfLocalVariable(thismem, fd->vthis);
        gIR->ir->CreateStore(*thisvar, thismem);
        *thisvar = thismem;
    }

    // give arguments storage
    if (fd->parameters)
    {
        size_t n = fd->parameters->dim;
        for (int i=0; i < n; ++i)
        {
            Dsymbol* argsym = (Dsymbol*)fd->parameters->data[i];
            VarDeclaration* vd = argsym->isVarDeclaration();
            assert(vd);

            // FIXME: llvm seems to want an alloca/byval for debug info
            if (!vd->needsStorage || vd->nestedref || vd->isRef() || vd->isOut())
            {
                Logger::println("skipping arg storage for (%s) %s ", vd->loc.toChars(), vd->toChars());
                continue;
            }
            // static array params don't support debug info it seems
            // probably because they're not passed byval
            else if (vd->type->toBasetype()->ty == Tsarray)
            {
                Logger::println("skipping arg storage for static array (%s) %s ", vd->loc.toChars(), vd->toChars());
                continue;
            }
            // debug info for normal aggr params seem to work fine
            else if (DtoIsPassedByRef(vd->type))
            {
                Logger::println("skipping arg storage for aggregate (%s) %s ", vd->loc.toChars(), vd->toChars());
                if (global.params.symdebug)
                    DtoDwarfLocalVariable(vd->ir.getIrValue(), vd);
                continue;
            }

            LLValue* a = vd->ir.irLocal->value;
            assert(a);
            std::string s(a->getName());
            Logger::println("giving argument '%s' storage", s.c_str());
            s.append("_storage");

            LLValue* v = new llvm::AllocaInst(a->getType(),s,allocaPoint);

            if (global.params.symdebug)
                DtoDwarfLocalVariable(v, vd);

            gIR->ir->CreateStore(a,v);
            vd->ir.irLocal->value = v;
        }
    }

    LLValue* parentNested = NULL;
    if (FuncDeclaration* fd2 = fd->toParent2()->isFuncDeclaration()) {
        if (!fd->isStatic()) // huh?
            parentNested = fd2->ir.irFunc->nestedVar;
    }

    // need result variable? (nested)
    if (fd->vresult && fd->vresult->nestedref) {
        Logger::println("nested vresult value: %s", fd->vresult->toChars());
        fd->nestedVars.insert(fd->vresult);
    }

    // construct nested variables struct
    if (!fd->nestedVars.empty() || parentNested) {
        std::vector<const LLType*> nestTypes;
        int j = 0;
        if (parentNested) {
            nestTypes.push_back(parentNested->getType());
            j++;
        }
        for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) {
            VarDeclaration* vd = *i;
            Logger::println("referenced nested variable %s", vd->toChars());
            if (!vd->ir.irLocal)
                vd->ir.irLocal = new IrLocal(vd);
            vd->ir.irLocal->nestedIndex = j++;
            if (vd->isParameter()) {
                if (!vd->ir.irLocal->value) {
                    assert(vd == fd->vthis);
                    vd->ir.irLocal->value = fd->ir.irFunc->thisVar;
                }
                assert(vd->ir.irLocal->value);
                nestTypes.push_back(vd->ir.irLocal->value->getType());
            }
            else {
                nestTypes.push_back(DtoType(vd->type));
            }
        }
        const llvm::StructType* nestSType = llvm::StructType::get(nestTypes);
        Logger::cout() << "nested var struct has type:" << *nestSType << '\n';
        fd->ir.irFunc->nestedVar = new llvm::AllocaInst(nestSType,"nestedvars",allocaPoint);
        if (parentNested) {
            assert(fd->ir.irFunc->thisVar);
            LLValue* ptr = gIR->ir->CreateBitCast(fd->ir.irFunc->thisVar, parentNested->getType(), "tmp");
            gIR->ir->CreateStore(ptr, DtoGEPi(fd->ir.irFunc->nestedVar, 0,0, "tmp"));
        }
        for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i) {
            VarDeclaration* vd = *i;
            if (vd->isParameter()) {
                assert(vd->ir.irLocal);
                gIR->ir->CreateStore(vd->ir.irLocal->value, DtoGEPi(fd->ir.irFunc->nestedVar, 0, vd->ir.irLocal->nestedIndex, "tmp"));
                vd->ir.irLocal->value = fd->ir.irFunc->nestedVar;
            }
        }
    }

    // copy _argptr to a memory location
    if (f->linkage == LINKd && f->varargs == 1)
    {
        LLValue* argptrmem = new llvm::AllocaInst(fd->ir.irFunc->_argptr->getType(), "_argptrmem", gIR->topallocapoint());
        new llvm::StoreInst(fd->ir.irFunc->_argptr, argptrmem, gIR->scopebb());
        fd->ir.irFunc->_argptr = argptrmem;
    }

    // output function body
    fd->fbody->toIR(gIR);

    // llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
    // in automatically, so we do it here.
    if (!gIR->scopereturned()) {
        // pass the previous block into this block
        if (global.params.symdebug) DtoDwarfFuncEnd(fd);
        if (func->getReturnType() == LLType::VoidTy) {
            llvm::ReturnInst::Create(gIR->scopebb());
        }
        else {
            if (!fd->isMain())
                llvm::ReturnInst::Create(llvm::UndefValue::get(func->getReturnType()), gIR->scopebb());
            else
                llvm::ReturnInst::Create(llvm::Constant::getNullValue(func->getReturnType()), gIR->scopebb());
        }
    }

    // erase alloca point
    allocaPoint->eraseFromParent();
    allocaPoint = 0;
    gIR->func()->allocapoint = 0;

    gIR->scopes.pop_back();

    // get rid of the endentry block, it's never used
    assert(!func->getBasicBlockList().empty());
    func->getBasicBlockList().pop_back();

    // if the last block is empty now, it must be unreachable or it's a bug somewhere else
    // would be nice to figure out how to assert that this is correct
    llvm::BasicBlock* lastbb = &func->getBasicBlockList().back();
    if (lastbb->empty())
    {
        new llvm::UnreachableInst(lastbb);
    }

    // if the last block is not terminated we return a null value or void
    // for some unknown reason this is needed when a void main() has a inline asm block ...
    // this should be harmless for well formed code!
    lastbb = &func->getBasicBlockList().back();
    if (!lastbb->getTerminator())
    {
        Logger::println("adding missing return statement");
        if (func->getReturnType() == LLType::VoidTy)
            llvm::ReturnInst::Create(lastbb);
        else
            llvm::ReturnInst::Create(llvm::Constant::getNullValue(func->getReturnType()), lastbb);
    }

    gIR->functions.pop_back();
}

//////////////////////////////////////////////////////////////////////////////////////////

const llvm::FunctionType* DtoBaseFunctionType(FuncDeclaration* fdecl)
{
    Dsymbol* parent = fdecl->toParent();
    ClassDeclaration* cd = parent->isClassDeclaration();
    assert(cd);

    FuncDeclaration* f = fdecl;

    while (cd)
    {
        ClassDeclaration* base = cd->baseClass;
        if (!base)
            break;
        FuncDeclaration* f2 = base->findFunc(fdecl->ident, (TypeFunction*)fdecl->type);
        if (f2) {
            f = f2;
            cd = base;
        }
        else
            break;
    }

    DtoResolveDsymbol(f);
    return llvm::cast<llvm::FunctionType>(DtoType(f->type));
}

//////////////////////////////////////////////////////////////////////////////////////////

DValue* DtoArgument(Argument* fnarg, Expression* argexp)
{
    Logger::println("DtoArgument");
    LOG_SCOPE;

    DValue* arg = argexp->toElem(gIR);

    // ref/out arg
    if (fnarg && ((fnarg->storageClass & STCref) || (fnarg->storageClass & STCout)))
    {
        if (arg->isVar() || arg->isLRValue())
            arg = new DImValue(argexp->type, arg->getLVal(), false);
        else
            arg = new DImValue(argexp->type, arg->getRVal(), false);
    }
    // byval arg, but expr has no storage yet
    else if (DtoIsPassedByRef(argexp->type) && (arg->isSlice() || arg->isComplex() || arg->isNull()))
    {
        LLValue* alloc = new llvm::AllocaInst(DtoType(argexp->type), "tmpparam", gIR->topallocapoint());
        DVarValue* vv = new DVarValue(argexp->type, alloc, true);
        DtoAssign(argexp->loc, vv, arg);
        arg = vv;
    }

    return arg;
}

//////////////////////////////////////////////////////////////////////////////////////////

void DtoVariadicArgument(Expression* argexp, LLValue* dst)
{
    Logger::println("DtoVariadicArgument");
    LOG_SCOPE;
    DVarValue vv(argexp->type, dst, true);
    DtoAssign(argexp->loc, &vv, argexp->toElem(gIR));
}

//////////////////////////////////////////////////////////////////////////////////////////

bool FuncDeclaration::isIntrinsic()
{
    return (llvmInternal == LLVMintrinsic || isVaIntrinsic());
}

bool FuncDeclaration::isVaIntrinsic()
{
    return (llvmInternal == LLVMva_start ||
            llvmInternal == LLVMva_copy ||
            llvmInternal == LLVMva_end);
}