comparison dmd/expression.c @ 1:c53b6e3fe49a trunk

[svn r5] Initial commit. Most things are very rough.
author lindquist
date Sat, 01 Sep 2007 21:43:27 +0200
parents
children 788401029ecf
comparison
equal deleted inserted replaced
0:a9e71648e74d 1:c53b6e3fe49a
1
2 // Compiler implementation of the D programming language
3 // Copyright (c) 1999-2007 by Digital Mars
4 // All Rights Reserved
5 // written by Walter Bright
6 // http://www.digitalmars.com
7 // License for redistribution is by either the Artistic License
8 // in artistic.txt, or the GNU General Public License in gnu.txt.
9 // See the included readme.txt for details.
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include <assert.h>
15 #include <complex>
16 #include <math.h>
17
18 #if _WIN32 && __DMC__
19 extern "C" char * __cdecl __locale_decpoint;
20 #endif
21
22 #if IN_GCC
23 // Issues with using -include total.h (defines integer_t) and then complex.h fails...
24 #undef integer_t
25 #endif
26
27 #ifdef __APPLE__
28 #define integer_t dmd_integer_t
29 #endif
30
31 #if IN_GCC || IN_LLVM
32 #include "mem.h"
33 #elif _WIN32
34 #include "..\root\mem.h"
35 #elif linux
36 #include "../root/mem.h"
37 #endif
38
39 //#include "port.h"
40 #include "mtype.h"
41 #include "init.h"
42 #include "expression.h"
43 #include "template.h"
44 #include "utf.h"
45 #include "enum.h"
46 #include "scope.h"
47 #include "statement.h"
48 #include "declaration.h"
49 #include "aggregate.h"
50 #include "import.h"
51 #include "id.h"
52 #include "dsymbol.h"
53 #include "module.h"
54 #include "attrib.h"
55 #include "hdrgen.h"
56 #include "parse.h"
57
58 Expression *createTypeInfoArray(Scope *sc, Expression *args[], int dim);
59
60 #define LOGSEMANTIC 0
61
62 /**********************************
63 * Set operator precedence for each operator.
64 */
65
66 // Operator precedence - greater values are higher precedence
67
68 enum PREC
69 {
70 PREC_zero,
71 PREC_expr,
72 PREC_assign,
73 PREC_cond,
74 PREC_oror,
75 PREC_andand,
76 PREC_or,
77 PREC_xor,
78 PREC_and,
79 PREC_equal,
80 PREC_rel,
81 PREC_shift,
82 PREC_add,
83 PREC_mul,
84 PREC_unary,
85 PREC_primary,
86 };
87
88 enum PREC precedence[TOKMAX];
89
90 void initPrecedence()
91 {
92 precedence[TOKimport] = PREC_primary;
93 precedence[TOKidentifier] = PREC_primary;
94 precedence[TOKthis] = PREC_primary;
95 precedence[TOKsuper] = PREC_primary;
96 precedence[TOKint64] = PREC_primary;
97 precedence[TOKfloat64] = PREC_primary;
98 precedence[TOKnull] = PREC_primary;
99 precedence[TOKstring] = PREC_primary;
100 precedence[TOKarrayliteral] = PREC_primary;
101 precedence[TOKtypedot] = PREC_primary;
102 precedence[TOKtypeid] = PREC_primary;
103 precedence[TOKis] = PREC_primary;
104 precedence[TOKassert] = PREC_primary;
105 precedence[TOKfunction] = PREC_primary;
106 precedence[TOKvar] = PREC_primary;
107
108 // post
109 precedence[TOKdotti] = PREC_primary;
110 precedence[TOKdot] = PREC_primary;
111 // precedence[TOKarrow] = PREC_primary;
112 precedence[TOKplusplus] = PREC_primary;
113 precedence[TOKminusminus] = PREC_primary;
114 precedence[TOKcall] = PREC_primary;
115 precedence[TOKslice] = PREC_primary;
116 precedence[TOKarray] = PREC_primary;
117
118 precedence[TOKaddress] = PREC_unary;
119 precedence[TOKstar] = PREC_unary;
120 precedence[TOKneg] = PREC_unary;
121 precedence[TOKuadd] = PREC_unary;
122 precedence[TOKnot] = PREC_unary;
123 precedence[TOKtobool] = PREC_add;
124 precedence[TOKtilde] = PREC_unary;
125 precedence[TOKdelete] = PREC_unary;
126 precedence[TOKnew] = PREC_unary;
127 precedence[TOKcast] = PREC_unary;
128
129 precedence[TOKmul] = PREC_mul;
130 precedence[TOKdiv] = PREC_mul;
131 precedence[TOKmod] = PREC_mul;
132
133 precedence[TOKadd] = PREC_add;
134 precedence[TOKmin] = PREC_add;
135 precedence[TOKcat] = PREC_add;
136
137 precedence[TOKshl] = PREC_shift;
138 precedence[TOKshr] = PREC_shift;
139 precedence[TOKushr] = PREC_shift;
140
141 precedence[TOKlt] = PREC_rel;
142 precedence[TOKle] = PREC_rel;
143 precedence[TOKgt] = PREC_rel;
144 precedence[TOKge] = PREC_rel;
145 precedence[TOKunord] = PREC_rel;
146 precedence[TOKlg] = PREC_rel;
147 precedence[TOKleg] = PREC_rel;
148 precedence[TOKule] = PREC_rel;
149 precedence[TOKul] = PREC_rel;
150 precedence[TOKuge] = PREC_rel;
151 precedence[TOKug] = PREC_rel;
152 precedence[TOKue] = PREC_rel;
153 precedence[TOKin] = PREC_rel;
154
155 precedence[TOKequal] = PREC_equal;
156 precedence[TOKnotequal] = PREC_equal;
157 precedence[TOKidentity] = PREC_equal;
158 precedence[TOKnotidentity] = PREC_equal;
159
160 precedence[TOKand] = PREC_and;
161
162 precedence[TOKxor] = PREC_xor;
163
164 precedence[TOKor] = PREC_or;
165
166 precedence[TOKandand] = PREC_andand;
167
168 precedence[TOKoror] = PREC_oror;
169
170 precedence[TOKquestion] = PREC_cond;
171
172 precedence[TOKassign] = PREC_assign;
173 precedence[TOKaddass] = PREC_assign;
174 precedence[TOKminass] = PREC_assign;
175 precedence[TOKcatass] = PREC_assign;
176 precedence[TOKmulass] = PREC_assign;
177 precedence[TOKdivass] = PREC_assign;
178 precedence[TOKmodass] = PREC_assign;
179 precedence[TOKshlass] = PREC_assign;
180 precedence[TOKshrass] = PREC_assign;
181 precedence[TOKushrass] = PREC_assign;
182 precedence[TOKandass] = PREC_assign;
183 precedence[TOKorass] = PREC_assign;
184 precedence[TOKxorass] = PREC_assign;
185
186 precedence[TOKcomma] = PREC_expr;
187 }
188
189 /*****************************************
190 * Determine if 'this' is available.
191 * If it is, return the FuncDeclaration that has it.
192 */
193
194 FuncDeclaration *hasThis(Scope *sc)
195 { FuncDeclaration *fd;
196 FuncDeclaration *fdthis;
197
198 //printf("hasThis()\n");
199 fdthis = sc->parent->isFuncDeclaration();
200 //printf("fdthis = %p, '%s'\n", fdthis, fdthis ? fdthis->toChars() : "");
201
202 // Go upwards until we find the enclosing member function
203 fd = fdthis;
204 while (1)
205 {
206 if (!fd)
207 {
208 goto Lno;
209 }
210 if (!fd->isNested())
211 break;
212
213 Dsymbol *parent = fd->parent;
214 while (parent)
215 {
216 TemplateInstance *ti = parent->isTemplateInstance();
217 if (ti)
218 parent = ti->parent;
219 else
220 break;
221 }
222
223 fd = fd->parent->isFuncDeclaration();
224 }
225
226 if (!fd->isThis())
227 { //printf("test '%s'\n", fd->toChars());
228 goto Lno;
229 }
230
231 assert(fd->vthis);
232 return fd;
233
234 Lno:
235 return NULL; // don't have 'this' available
236 }
237
238
239 /***************************************
240 * Pull out any properties.
241 */
242
243 Expression *resolveProperties(Scope *sc, Expression *e)
244 {
245 //printf("resolveProperties(%s)\n", e->toChars());
246 if (e->type)
247 {
248 Type *t = e->type->toBasetype();
249
250 if (t->ty == Tfunction)
251 {
252 e = new CallExp(e->loc, e);
253 e = e->semantic(sc);
254 }
255
256 /* Look for e being a lazy parameter; rewrite as delegate call
257 */
258 else if (e->op == TOKvar)
259 { VarExp *ve = (VarExp *)e;
260
261 if (ve->var->storage_class & STClazy)
262 {
263 e = new CallExp(e->loc, e);
264 e = e->semantic(sc);
265 }
266 }
267
268 else if (e->op == TOKdotexp)
269 {
270 e->error("expression has no value");
271 }
272 }
273 return e;
274 }
275
276 /******************************
277 * Perform semantic() on an array of Expressions.
278 */
279
280 void arrayExpressionSemantic(Expressions *exps, Scope *sc)
281 {
282 if (exps)
283 {
284 for (size_t i = 0; i < exps->dim; i++)
285 { Expression *e = (Expression *)exps->data[i];
286
287 e = e->semantic(sc);
288 exps->data[i] = (void *)e;
289 }
290 }
291 }
292
293 /****************************************
294 * Expand tuples.
295 */
296
297 void expandTuples(Expressions *exps)
298 {
299 //printf("expandTuples()\n");
300 if (exps)
301 {
302 for (size_t i = 0; i < exps->dim; i++)
303 { Expression *arg = (Expression *)exps->data[i];
304 if (!arg)
305 continue;
306
307 // Look for tuple with 0 members
308 if (arg->op == TOKtype)
309 { TypeExp *e = (TypeExp *)arg;
310 if (e->type->toBasetype()->ty == Ttuple)
311 { TypeTuple *tt = (TypeTuple *)e->type->toBasetype();
312
313 if (!tt->arguments || tt->arguments->dim == 0)
314 {
315 exps->remove(i);
316 if (i == exps->dim)
317 return;
318 i--;
319 continue;
320 }
321 }
322 }
323
324 // Inline expand all the tuples
325 while (arg->op == TOKtuple)
326 { TupleExp *te = (TupleExp *)arg;
327
328 exps->remove(i); // remove arg
329 exps->insert(i, te->exps); // replace with tuple contents
330 if (i == exps->dim)
331 return; // empty tuple, no more arguments
332 arg = (Expression *)exps->data[i];
333 }
334 }
335 }
336 }
337
338 /****************************************
339 * Preprocess arguments to function.
340 */
341
342 void preFunctionArguments(Loc loc, Scope *sc, Expressions *exps)
343 {
344 if (exps)
345 {
346 expandTuples(exps);
347
348 for (size_t i = 0; i < exps->dim; i++)
349 { Expression *arg = (Expression *)exps->data[i];
350
351 if (!arg->type)
352 {
353 #ifdef DEBUG
354 if (!global.gag)
355 printf("1: \n");
356 #endif
357 arg->error("%s is not an expression", arg->toChars());
358 arg = new IntegerExp(arg->loc, 0, Type::tint32);
359 }
360
361 arg = resolveProperties(sc, arg);
362 exps->data[i] = (void *) arg;
363
364 //arg->rvalue();
365 #if 0
366 if (arg->type->ty == Tfunction)
367 {
368 arg = new AddrExp(arg->loc, arg);
369 arg = arg->semantic(sc);
370 exps->data[i] = (void *) arg;
371 }
372 #endif
373 }
374 }
375 }
376
377
378 /****************************************
379 * Now that we know the exact type of the function we're calling,
380 * the arguments[] need to be adjusted:
381 * 1) implicitly convert argument to the corresponding parameter type
382 * 2) add default arguments for any missing arguments
383 * 3) do default promotions on arguments corresponding to ...
384 * 4) add hidden _arguments[] argument
385 */
386
387 void functionArguments(Loc loc, Scope *sc, TypeFunction *tf, Expressions *arguments)
388 {
389 unsigned n;
390 int done;
391 Type *tb;
392
393 //printf("functionArguments()\n");
394 assert(arguments);
395 size_t nargs = arguments ? arguments->dim : 0;
396 size_t nparams = Argument::dim(tf->parameters);
397
398 if (nargs > nparams && tf->varargs == 0)
399 error(loc, "expected %zu arguments, not %zu", nparams, nargs);
400
401 n = (nargs > nparams) ? nargs : nparams; // n = max(nargs, nparams)
402
403 done = 0;
404 for (size_t i = 0; i < n; i++)
405 {
406 Expression *arg;
407
408 if (i < nargs)
409 arg = (Expression *)arguments->data[i];
410 else
411 arg = NULL;
412
413 if (i < nparams)
414 {
415 Argument *p = Argument::getNth(tf->parameters, i);
416
417 if (!arg)
418 {
419 if (!p->defaultArg)
420 {
421 if (tf->varargs == 2 && i + 1 == nparams)
422 goto L2;
423 error(loc, "expected %zu arguments, not %zu", nparams, nargs);
424 break;
425 }
426 arg = p->defaultArg->copy();
427 arguments->push(arg);
428 nargs++;
429 }
430
431 if (tf->varargs == 2 && i + 1 == nparams)
432 {
433 //printf("\t\tvarargs == 2, p->type = '%s'\n", p->type->toChars());
434 if (arg->implicitConvTo(p->type))
435 {
436 if (nargs != nparams)
437 error(loc, "expected %zu arguments, not %zu", nparams, nargs);
438 goto L1;
439 }
440 L2:
441 Type *tb = p->type->toBasetype();
442 Type *tret = p->isLazyArray();
443 switch (tb->ty)
444 {
445 case Tsarray:
446 case Tarray:
447 { // Create a static array variable v of type arg->type
448 #ifdef IN_GCC
449 /* GCC 4.0 does not like zero length arrays used like
450 this; pass a null array value instead. Could also
451 just make a one-element array. */
452 if (nargs - i == 0)
453 {
454 arg = new NullExp(loc);
455 break;
456 }
457 #endif
458 static int idn;
459 char name[10 + sizeof(idn)*3 + 1];
460 sprintf(name, "__arrayArg%d", ++idn);
461 Identifier *id = Lexer::idPool(name);
462 Type *t = new TypeSArray(tb->next, new IntegerExp(nargs - i));
463 t = t->semantic(loc, sc);
464 VarDeclaration *v = new VarDeclaration(loc, t, id, new VoidInitializer(loc));
465 v->semantic(sc);
466 v->parent = sc->parent;
467 //sc->insert(v);
468
469 Expression *c = new DeclarationExp(0, v);
470 c->type = v->type;
471
472 for (size_t u = i; u < nargs; u++)
473 { Expression *a = (Expression *)arguments->data[u];
474 if (tret && !tb->next->equals(a->type))
475 a = a->toDelegate(sc, tret);
476
477 Expression *e = new VarExp(loc, v);
478 e = new IndexExp(loc, e, new IntegerExp(u + 1 - nparams));
479 e = new AssignExp(loc, e, a);
480 if (c)
481 c = new CommaExp(loc, c, e);
482 else
483 c = e;
484 }
485 arg = new VarExp(loc, v);
486 if (c)
487 arg = new CommaExp(loc, c, arg);
488 break;
489 }
490 case Tclass:
491 { /* Set arg to be:
492 * new Tclass(arg0, arg1, ..., argn)
493 */
494 Expressions *args = new Expressions();
495 args->setDim(nargs - i);
496 for (size_t u = i; u < nargs; u++)
497 args->data[u - i] = arguments->data[u];
498 arg = new NewExp(loc, NULL, NULL, p->type, args);
499 break;
500 }
501 default:
502 if (!arg)
503 { error(loc, "not enough arguments");
504 return;
505 }
506 break;
507 }
508 arg = arg->semantic(sc);
509 //printf("\targ = '%s'\n", arg->toChars());
510 arguments->setDim(i + 1);
511 done = 1;
512 }
513
514 L1:
515 if (!(p->storageClass & STClazy && p->type->ty == Tvoid))
516 arg = arg->implicitCastTo(sc, p->type);
517 if (p->storageClass & (STCout | STCref))
518 {
519 // BUG: should check that argument to ref is type 'invariant'
520 // BUG: assignments to ref should also be type 'invariant'
521 arg = arg->modifiableLvalue(sc, NULL);
522
523 //if (arg->op == TOKslice)
524 //arg->error("cannot modify slice %s", arg->toChars());
525 }
526
527 // Convert static arrays to pointers
528 tb = arg->type->toBasetype();
529 if (tb->ty == Tsarray)
530 {
531 arg = arg->checkToPointer();
532 }
533
534 // Convert lazy argument to a delegate
535 if (p->storageClass & STClazy)
536 {
537 arg = arg->toDelegate(sc, p->type);
538 }
539 }
540 else
541 {
542
543 // If not D linkage, do promotions
544 if (tf->linkage != LINKd)
545 {
546 // Promote bytes, words, etc., to ints
547 arg = arg->integralPromotions(sc);
548
549 // Promote floats to doubles
550 switch (arg->type->ty)
551 {
552 case Tfloat32:
553 arg = arg->castTo(sc, Type::tfloat64);
554 break;
555
556 case Timaginary32:
557 arg = arg->castTo(sc, Type::timaginary64);
558 break;
559 }
560 }
561
562 // Convert static arrays to dynamic arrays
563 tb = arg->type->toBasetype();
564 if (tb->ty == Tsarray)
565 { TypeSArray *ts = (TypeSArray *)tb;
566 Type *ta = tb->next->arrayOf();
567 if (ts->size(arg->loc) == 0)
568 { arg = new NullExp(arg->loc);
569 arg->type = ta;
570 }
571 else
572 arg = arg->castTo(sc, ta);
573 }
574
575 arg->rvalue();
576 }
577 arg = arg->optimize(WANTvalue);
578 arguments->data[i] = (void *) arg;
579 if (done)
580 break;
581 }
582
583 // If D linkage and variadic, add _arguments[] as first argument
584 if (tf->linkage == LINKd && tf->varargs == 1)
585 {
586 Expression *e;
587
588 e = createTypeInfoArray(sc, (Expression **)&arguments->data[nparams],
589 arguments->dim - nparams);
590 arguments->insert(0, e);
591 }
592 }
593
594 /**************************************************
595 * Write expression out to buf, but wrap it
596 * in ( ) if its precedence is less than pr.
597 */
598
599 void expToCBuffer(OutBuffer *buf, HdrGenState *hgs, Expression *e, enum PREC pr)
600 {
601 if (precedence[e->op] < pr)
602 {
603 buf->writeByte('(');
604 e->toCBuffer(buf, hgs);
605 buf->writeByte(')');
606 }
607 else
608 e->toCBuffer(buf, hgs);
609 }
610
611 /**************************************************
612 * Write out argument list to buf.
613 */
614
615 void argsToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs)
616 {
617 if (arguments)
618 {
619 for (size_t i = 0; i < arguments->dim; i++)
620 { Expression *arg = (Expression *)arguments->data[i];
621
622 if (i)
623 buf->writeByte(',');
624 expToCBuffer(buf, hgs, arg, PREC_assign);
625 }
626 }
627 }
628
629 /**************************************************
630 * Write out argument types to buf.
631 */
632
633 void argExpTypesToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs)
634 {
635 if (arguments)
636 { OutBuffer argbuf;
637
638 for (size_t i = 0; i < arguments->dim; i++)
639 { Expression *arg = (Expression *)arguments->data[i];
640
641 if (i)
642 buf->writeByte(',');
643 argbuf.reset();
644 arg->type->toCBuffer2(&argbuf, NULL, hgs);
645 buf->write(&argbuf);
646 }
647 }
648 }
649
650 /******************************** Expression **************************/
651
652 Expression::Expression(Loc loc, enum TOK op, int size)
653 : loc(loc)
654 {
655 this->loc = loc;
656 this->op = op;
657 this->size = size;
658 type = NULL;
659 }
660
661 Expression *Expression::syntaxCopy()
662 {
663 //printf("Expression::syntaxCopy()\n");
664 //dump(0);
665 return copy();
666 }
667
668 /*********************************
669 * Does *not* do a deep copy.
670 */
671
672 Expression *Expression::copy()
673 {
674 Expression *e;
675 if (!size)
676 {
677 #ifdef DEBUG
678 fprintf(stdmsg, "No expression copy for: %s\n", toChars());
679 printf("op = %d\n", op);
680 dump(0);
681 #endif
682 assert(0);
683 }
684 e = (Expression *)mem.malloc(size);
685 return (Expression *)memcpy(e, this, size);
686 }
687
688 /**************************
689 * Semantically analyze Expression.
690 * Determine types, fold constants, etc.
691 */
692
693 Expression *Expression::semantic(Scope *sc)
694 {
695 #if LOGSEMANTIC
696 printf("Expression::semantic()\n");
697 #endif
698 if (type)
699 type = type->semantic(loc, sc);
700 else
701 type = Type::tvoid;
702 return this;
703 }
704
705 void Expression::print()
706 {
707 fprintf(stdmsg, "%s\n", toChars());
708 fflush(stdmsg);
709 }
710
711 char *Expression::toChars()
712 { OutBuffer *buf;
713 HdrGenState hgs;
714
715 memset(&hgs, 0, sizeof(hgs));
716 buf = new OutBuffer();
717 toCBuffer(buf, &hgs);
718 return buf->toChars();
719 }
720
721 void Expression::error(const char *format, ...)
722 {
723 va_list ap;
724 va_start(ap, format);
725 ::verror(loc, format, ap);
726 va_end( ap );
727 }
728
729 void Expression::rvalue()
730 {
731 if (type && type->toBasetype()->ty == Tvoid)
732 { error("expression %s is void and has no value", toChars());
733 #if 0
734 dump(0);
735 halt();
736 #endif
737 }
738 }
739
740 Expression *Expression::combine(Expression *e1, Expression *e2)
741 {
742 if (e1)
743 {
744 if (e2)
745 {
746 e1 = new CommaExp(e1->loc, e1, e2);
747 e1->type = e2->type;
748 }
749 }
750 else
751 e1 = e2;
752 return e1;
753 }
754
755 integer_t Expression::toInteger()
756 {
757 //printf("Expression %s\n", Token::toChars(op));
758 error("Integer constant expression expected instead of %s", toChars());
759 return 0;
760 }
761
762 uinteger_t Expression::toUInteger()
763 {
764 //printf("Expression %s\n", Token::toChars(op));
765 return (uinteger_t)toInteger();
766 }
767
768 real_t Expression::toReal()
769 {
770 error("Floating point constant expression expected instead of %s", toChars());
771 return 0;
772 }
773
774 real_t Expression::toImaginary()
775 {
776 error("Floating point constant expression expected instead of %s", toChars());
777 return 0;
778 }
779
780 complex_t Expression::toComplex()
781 {
782 error("Floating point constant expression expected instead of %s", toChars());
783 #ifdef IN_GCC
784 return complex_t(real_t(0)); // %% nicer
785 #else
786 return 0;
787 #endif
788 }
789
790 void Expression::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
791 {
792 buf->writestring(Token::toChars(op));
793 }
794
795 void Expression::toMangleBuffer(OutBuffer *buf)
796 {
797 error("expression %s is not a valid template value argument", toChars());
798 }
799
800 /*******************************
801 * Give error if we're not an lvalue.
802 * If we can, convert expression to be an lvalue.
803 */
804
805 Expression *Expression::toLvalue(Scope *sc, Expression *e)
806 {
807 if (!e)
808 e = this;
809 else if (!loc.filename)
810 loc = e->loc;
811 error("%s is not an lvalue", e->toChars());
812 return this;
813 }
814
815 Expression *Expression::modifiableLvalue(Scope *sc, Expression *e)
816 {
817 // See if this expression is a modifiable lvalue (i.e. not const)
818 return toLvalue(sc, e);
819 }
820
821 /************************************
822 * Detect cases where pointers to the stack can 'escape' the
823 * lifetime of the stack frame.
824 */
825
826 void Expression::checkEscape()
827 {
828 }
829
830 void Expression::checkScalar()
831 {
832 if (!type->isscalar())
833 error("'%s' is not a scalar, it is a %s", toChars(), type->toChars());
834 }
835
836 void Expression::checkNoBool()
837 {
838 if (type->toBasetype()->ty == Tbool)
839 error("operation not allowed on bool '%s'", toChars());
840 }
841
842 Expression *Expression::checkIntegral()
843 {
844 if (!type->isintegral())
845 { error("'%s' is not of integral type, it is a %s", toChars(), type->toChars());
846 return new IntegerExp(0);
847 }
848 return this;
849 }
850
851 void Expression::checkArithmetic()
852 {
853 if (!type->isintegral() && !type->isfloating())
854 error("'%s' is not an arithmetic type", toChars());
855 }
856
857 void Expression::checkDeprecated(Scope *sc, Dsymbol *s)
858 {
859 s->checkDeprecated(loc, sc);
860 }
861
862 /********************************
863 * Check for expressions that have no use.
864 * Input:
865 * flag 0 not going to use the result, so issue error message if no
866 * side effects
867 * 1 the result of the expression is used, but still check
868 * for useless subexpressions
869 * 2 do not issue error messages, just return !=0 if expression
870 * has side effects
871 */
872
873 int Expression::checkSideEffect(int flag)
874 {
875 if (flag == 0)
876 { if (op == TOKimport)
877 {
878 error("%s has no effect", toChars());
879 }
880 else
881 error("%s has no effect in expression (%s)",
882 Token::toChars(op), toChars());
883 }
884 return 0;
885 }
886
887 /*****************************
888 * Check that expression can be tested for true or false.
889 */
890
891 Expression *Expression::checkToBoolean()
892 {
893 // Default is 'yes' - do nothing
894
895 #ifdef DEBUG
896 if (!type)
897 dump(0);
898 #endif
899
900 if (!type->checkBoolean())
901 {
902 error("expression %s of type %s does not have a boolean value", toChars(), type->toChars());
903 }
904 return this;
905 }
906
907 /****************************
908 */
909
910 Expression *Expression::checkToPointer()
911 {
912 Expression *e;
913 Type *tb;
914
915 //printf("Expression::checkToPointer()\n");
916 e = this;
917
918 // If C static array, convert to pointer
919 tb = type->toBasetype();
920 if (tb->ty == Tsarray)
921 { TypeSArray *ts = (TypeSArray *)tb;
922 if (ts->size(loc) == 0)
923 e = new NullExp(loc);
924 else
925 e = new AddrExp(loc, this);
926 e->type = tb->next->pointerTo();
927 }
928 return e;
929 }
930
931 /******************************
932 * Take address of expression.
933 */
934
935 Expression *Expression::addressOf(Scope *sc)
936 {
937 Expression *e;
938
939 //printf("Expression::addressOf()\n");
940 e = toLvalue(sc, NULL);
941 e = new AddrExp(loc, e);
942 e->type = type->pointerTo();
943 return e;
944 }
945
946 /******************************
947 * If this is a reference, dereference it.
948 */
949
950 Expression *Expression::deref()
951 {
952 //printf("Expression::deref()\n");
953 if (type->ty == Treference)
954 { Expression *e;
955
956 e = new PtrExp(loc, this);
957 e->type = type->next;
958 return e;
959 }
960 return this;
961 }
962
963 /********************************
964 * Does this expression statically evaluate to a boolean TRUE or FALSE?
965 */
966
967 int Expression::isBool(int result)
968 {
969 return FALSE;
970 }
971
972 /********************************
973 * Does this expression result in either a 1 or a 0?
974 */
975
976 int Expression::isBit()
977 {
978 return FALSE;
979 }
980
981 Expressions *Expression::arraySyntaxCopy(Expressions *exps)
982 { Expressions *a = NULL;
983
984 if (exps)
985 {
986 a = new Expressions();
987 a->setDim(exps->dim);
988 for (int i = 0; i < a->dim; i++)
989 { Expression *e = (Expression *)exps->data[i];
990
991 e = e->syntaxCopy();
992 a->data[i] = e;
993 }
994 }
995 return a;
996 }
997
998 /******************************** IntegerExp **************************/
999
1000 IntegerExp::IntegerExp(Loc loc, integer_t value, Type *type)
1001 : Expression(loc, TOKint64, sizeof(IntegerExp))
1002 {
1003 //printf("IntegerExp(value = %lld, type = '%s')\n", value, type ? type->toChars() : "");
1004 if (type && !type->isscalar())
1005 {
1006 error("integral constant must be scalar type, not %s", type->toChars());
1007 type = Type::terror;
1008 }
1009 this->type = type;
1010 this->value = value;
1011 }
1012
1013 IntegerExp::IntegerExp(integer_t value)
1014 : Expression(0, TOKint64, sizeof(IntegerExp))
1015 {
1016 this->type = Type::tint32;
1017 this->value = value;
1018 }
1019
1020 int IntegerExp::equals(Object *o)
1021 { IntegerExp *ne;
1022
1023 if (this == o ||
1024 (((Expression *)o)->op == TOKint64 &&
1025 ((ne = (IntegerExp *)o), type->equals(ne->type)) &&
1026 value == ne->value))
1027 return 1;
1028 return 0;
1029 }
1030
1031 char *IntegerExp::toChars()
1032 {
1033 #if 1
1034 return Expression::toChars();
1035 #else
1036 static char buffer[sizeof(value) * 3 + 1];
1037
1038 sprintf(buffer, "%jd", value);
1039 return buffer;
1040 #endif
1041 }
1042
1043 integer_t IntegerExp::toInteger()
1044 { Type *t;
1045
1046 t = type;
1047 while (t)
1048 {
1049 switch (t->ty)
1050 {
1051 case Tbit:
1052 case Tbool: value = (value != 0); break;
1053 case Tint8: value = (d_int8) value; break;
1054 case Tchar:
1055 case Tuns8: value = (d_uns8) value; break;
1056 case Tint16: value = (d_int16) value; break;
1057 case Twchar:
1058 case Tuns16: value = (d_uns16) value; break;
1059 case Tint32: value = (d_int32) value; break;
1060 case Tpointer:
1061 case Tdchar:
1062 case Tuns32: value = (d_uns32) value; break;
1063 case Tint64: value = (d_int64) value; break;
1064 case Tuns64: value = (d_uns64) value; break;
1065
1066 case Tenum:
1067 {
1068 TypeEnum *te = (TypeEnum *)t;
1069 t = te->sym->memtype;
1070 continue;
1071 }
1072
1073 case Ttypedef:
1074 {
1075 TypeTypedef *tt = (TypeTypedef *)t;
1076 t = tt->sym->basetype;
1077 continue;
1078 }
1079
1080 default:
1081 print();
1082 type->print();
1083 assert(0);
1084 break;
1085 }
1086 break;
1087 }
1088 return value;
1089 }
1090
1091 real_t IntegerExp::toReal()
1092 {
1093 Type *t;
1094
1095 toInteger();
1096 t = type->toBasetype();
1097 if (t->ty == Tuns64)
1098 return (real_t)(d_uns64)value;
1099 else
1100 return (real_t)(d_int64)value;
1101 }
1102
1103 real_t IntegerExp::toImaginary()
1104 {
1105 return (real_t) 0;
1106 }
1107
1108 complex_t IntegerExp::toComplex()
1109 {
1110 return toReal();
1111 }
1112
1113 int IntegerExp::isBool(int result)
1114 {
1115 return result ? value != 0 : value == 0;
1116 }
1117
1118 Expression *IntegerExp::semantic(Scope *sc)
1119 {
1120 if (!type)
1121 {
1122 // Determine what the type of this number is
1123 integer_t number = value;
1124
1125 if (number & 0x8000000000000000LL)
1126 type = Type::tuns64;
1127 else if (number & 0xFFFFFFFF80000000LL)
1128 type = Type::tint64;
1129 else
1130 type = Type::tint32;
1131 }
1132 else
1133 { type = type->semantic(loc, sc);
1134 }
1135 return this;
1136 }
1137
1138 Expression *IntegerExp::toLvalue(Scope *sc, Expression *e)
1139 {
1140 if (!e)
1141 e = this;
1142 else if (!loc.filename)
1143 loc = e->loc;
1144 e->error("constant %s is not an lvalue", e->toChars());
1145 return this;
1146 }
1147
1148 void IntegerExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
1149 {
1150 integer_t v = toInteger();
1151
1152 if (type)
1153 { Type *t = type;
1154
1155 L1:
1156 switch (t->ty)
1157 {
1158 case Tenum:
1159 { TypeEnum *te = (TypeEnum *)t;
1160 buf->printf("cast(%s)", te->sym->toChars());
1161 t = te->sym->memtype;
1162 goto L1;
1163 }
1164
1165 case Ttypedef:
1166 { TypeTypedef *tt = (TypeTypedef *)t;
1167 buf->printf("cast(%s)", tt->sym->toChars());
1168 t = tt->sym->basetype;
1169 goto L1;
1170 }
1171
1172 case Twchar: // BUG: need to cast(wchar)
1173 case Tdchar: // BUG: need to cast(dchar)
1174 if ((uinteger_t)v > 0xFF)
1175 {
1176 buf->printf("'\\U%08x'", v);
1177 break;
1178 }
1179 case Tchar:
1180 if (v == '\'')
1181 buf->writestring("'\\''");
1182 else if (isprint(v) && v != '\\')
1183 buf->printf("'%c'", (int)v);
1184 else
1185 buf->printf("'\\x%02x'", (int)v);
1186 break;
1187
1188 case Tint8:
1189 buf->writestring("cast(byte)");
1190 goto L2;
1191
1192 case Tint16:
1193 buf->writestring("cast(short)");
1194 goto L2;
1195
1196 case Tint32:
1197 L2:
1198 buf->printf("%d", (int)v);
1199 break;
1200
1201 case Tuns8:
1202 buf->writestring("cast(ubyte)");
1203 goto L3;
1204
1205 case Tuns16:
1206 buf->writestring("cast(ushort)");
1207 goto L3;
1208
1209 case Tuns32:
1210 L3:
1211 buf->printf("%du", (unsigned)v);
1212 break;
1213
1214 case Tint64:
1215 buf->printf("%jdL", v);
1216 break;
1217
1218 case Tuns64:
1219 buf->printf("%juLU", v);
1220 break;
1221
1222 case Tbit:
1223 case Tbool:
1224 buf->writestring((char *)(v ? "true" : "false"));
1225 break;
1226
1227 case Tpointer:
1228 buf->writestring("cast(");
1229 buf->writestring(t->toChars());
1230 buf->writeByte(')');
1231 goto L3;
1232
1233 default:
1234 #ifdef DEBUG
1235 t->print();
1236 #endif
1237 assert(0);
1238 }
1239 }
1240 else if (v & 0x8000000000000000LL)
1241 buf->printf("0x%jx", v);
1242 else
1243 buf->printf("%jd", v);
1244 }
1245
1246 void IntegerExp::toMangleBuffer(OutBuffer *buf)
1247 {
1248 if ((sinteger_t)value < 0)
1249 buf->printf("N%jd", -value);
1250 else
1251 buf->printf("%jd", value);
1252 }
1253
1254 /******************************** RealExp **************************/
1255
1256 RealExp::RealExp(Loc loc, real_t value, Type *type)
1257 : Expression(loc, TOKfloat64, sizeof(RealExp))
1258 {
1259 //printf("RealExp::RealExp(%Lg)\n", value);
1260 this->value = value;
1261 this->type = type;
1262 }
1263
1264 char *RealExp::toChars()
1265 {
1266 static char buffer[sizeof(value) * 3 + 8 + 1 + 1];
1267
1268 #ifdef IN_GCC
1269 value.format(buffer, sizeof(buffer));
1270 if (type->isimaginary())
1271 strcat(buffer, "i");
1272 #else
1273 sprintf(buffer, type->isimaginary() ? "%Lgi" : "%Lg", value);
1274 #endif
1275 assert(strlen(buffer) < sizeof(buffer));
1276 return buffer;
1277 }
1278
1279 integer_t RealExp::toInteger()
1280 {
1281 #ifdef IN_GCC
1282 return toReal().toInt();
1283 #else
1284 return (sinteger_t) toReal();
1285 #endif
1286 }
1287
1288 uinteger_t RealExp::toUInteger()
1289 {
1290 #ifdef IN_GCC
1291 return (uinteger_t) toReal().toInt();
1292 #else
1293 return (uinteger_t) toReal();
1294 #endif
1295 }
1296
1297 real_t RealExp::toReal()
1298 {
1299 return type->isreal() ? value : 0;
1300 }
1301
1302 real_t RealExp::toImaginary()
1303 {
1304 return type->isreal() ? 0 : value;
1305 }
1306
1307 complex_t RealExp::toComplex()
1308 {
1309 #ifdef __DMC__
1310 return toReal() + toImaginary() * I;
1311 #else
1312 return complex_t(toReal(), toImaginary());
1313 #endif
1314 }
1315
1316 /********************************
1317 * Test to see if two reals are the same.
1318 * Regard NaN's as equivalent.
1319 * Regard +0 and -0 as different.
1320 */
1321
1322 int RealEquals(real_t x1, real_t x2)
1323 {
1324 return (isnan(x1) && isnan(x2)) ||
1325 /* In some cases, the REALPAD bytes get garbage in them,
1326 * so be sure and ignore them.
1327 */
1328 memcmp(&x1, &x2, REALSIZE - REALPAD) == 0;
1329 }
1330
1331 int RealExp::equals(Object *o)
1332 { RealExp *ne;
1333
1334 if (this == o ||
1335 (((Expression *)o)->op == TOKfloat64 &&
1336 ((ne = (RealExp *)o), type->equals(ne->type)) &&
1337 RealEquals(value, ne->value)
1338 )
1339 )
1340 return 1;
1341 return 0;
1342 }
1343
1344 Expression *RealExp::semantic(Scope *sc)
1345 {
1346 if (!type)
1347 type = Type::tfloat64;
1348 else
1349 type = type->semantic(loc, sc);
1350 return this;
1351 }
1352
1353 int RealExp::isBool(int result)
1354 {
1355 #ifdef IN_GCC
1356 return result ? (! value.isZero()) : (value.isZero());
1357 #else
1358 return result ? (value != 0)
1359 : (value == 0);
1360 #endif
1361 }
1362
1363 void floatToBuffer(OutBuffer *buf, Type *type, real_t value)
1364 {
1365 /* In order to get an exact representation, try converting it
1366 * to decimal then back again. If it matches, use it.
1367 * If it doesn't, fall back to hex, which is
1368 * always exact.
1369 */
1370 char buffer[25];
1371 sprintf(buffer, "%Lg", value);
1372 assert(strlen(buffer) < sizeof(buffer));
1373 #if _WIN32 && __DMC__
1374 char *save = __locale_decpoint;
1375 __locale_decpoint = ".";
1376 real_t r = strtold(buffer, NULL);
1377 __locale_decpoint = save;
1378 #else
1379 real_t r = strtold(buffer, NULL);
1380 #endif
1381 if (r == value) // if exact duplication
1382 buf->writestring(buffer);
1383 else
1384 buf->printf("%La", value); // ensure exact duplication
1385
1386 if (type)
1387 {
1388 Type *t = type->toBasetype();
1389 switch (t->ty)
1390 {
1391 case Tfloat32:
1392 case Timaginary32:
1393 case Tcomplex32:
1394 buf->writeByte('F');
1395 break;
1396
1397 case Tfloat80:
1398 case Timaginary80:
1399 case Tcomplex80:
1400 buf->writeByte('L');
1401 break;
1402
1403 default:
1404 break;
1405 }
1406 if (t->isimaginary())
1407 buf->writeByte('i');
1408 }
1409 }
1410
1411 void RealExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
1412 {
1413 floatToBuffer(buf, type, value);
1414 }
1415
1416 void realToMangleBuffer(OutBuffer *buf, real_t value)
1417 {
1418 /* Rely on %A to get portable mangling.
1419 * Must munge result to get only identifier characters.
1420 *
1421 * Possible values from %A => mangled result
1422 * NAN => NAN
1423 * -INF => NINF
1424 * INF => INF
1425 * -0X1.1BC18BA997B95P+79 => N11BC18BA997B95P79
1426 * 0X1.9P+2 => 19P2
1427 */
1428
1429 if (isnan(value))
1430 buf->writestring("NAN"); // no -NAN bugs
1431 else
1432 {
1433 char buffer[32];
1434 int n = sprintf(buffer, "%LA", value);
1435 assert(n > 0 && n < sizeof(buffer));
1436 for (int i = 0; i < n; i++)
1437 { char c = buffer[i];
1438
1439 switch (c)
1440 {
1441 case '-':
1442 buf->writeByte('N');
1443 break;
1444
1445 case '+':
1446 case 'X':
1447 case '.':
1448 break;
1449
1450 case '0':
1451 if (i < 2)
1452 break; // skip leading 0X
1453 default:
1454 buf->writeByte(c);
1455 break;
1456 }
1457 }
1458 }
1459 }
1460
1461 void RealExp::toMangleBuffer(OutBuffer *buf)
1462 {
1463 buf->writeByte('e');
1464 realToMangleBuffer(buf, value);
1465 }
1466
1467
1468 /******************************** ComplexExp **************************/
1469
1470 ComplexExp::ComplexExp(Loc loc, complex_t value, Type *type)
1471 : Expression(loc, TOKcomplex80, sizeof(ComplexExp))
1472 {
1473 this->value = value;
1474 this->type = type;
1475 //printf("ComplexExp::ComplexExp(%s)\n", toChars());
1476 }
1477
1478 char *ComplexExp::toChars()
1479 {
1480 static char buffer[sizeof(value) * 3 + 8 + 1];
1481
1482 #ifdef IN_GCC
1483 char buf1[sizeof(value) * 3 + 8 + 1];
1484 char buf2[sizeof(value) * 3 + 8 + 1];
1485 creall(value).format(buf1, sizeof(buf1));
1486 cimagl(value).format(buf2, sizeof(buf2));
1487 sprintf(buffer, "(%s+%si)", buf1, buf2);
1488 #else
1489 sprintf(buffer, "(%Lg+%Lgi)", creall(value), cimagl(value));
1490 assert(strlen(buffer) < sizeof(buffer));
1491 #endif
1492 return buffer;
1493 }
1494
1495 integer_t ComplexExp::toInteger()
1496 {
1497 #ifdef IN_GCC
1498 return (sinteger_t) toReal().toInt();
1499 #else
1500 return (sinteger_t) toReal();
1501 #endif
1502 }
1503
1504 uinteger_t ComplexExp::toUInteger()
1505 {
1506 #ifdef IN_GCC
1507 return (uinteger_t) toReal().toInt();
1508 #else
1509 return (uinteger_t) toReal();
1510 #endif
1511 }
1512
1513 real_t ComplexExp::toReal()
1514 {
1515 return creall(value);
1516 }
1517
1518 real_t ComplexExp::toImaginary()
1519 {
1520 return cimagl(value);
1521 }
1522
1523 complex_t ComplexExp::toComplex()
1524 {
1525 return value;
1526 }
1527
1528 int ComplexExp::equals(Object *o)
1529 { ComplexExp *ne;
1530
1531 if (this == o ||
1532 (((Expression *)o)->op == TOKcomplex80 &&
1533 ((ne = (ComplexExp *)o), type->equals(ne->type)) &&
1534 RealEquals(creall(value), creall(ne->value)) &&
1535 RealEquals(cimagl(value), cimagl(ne->value))
1536 )
1537 )
1538 return 1;
1539 return 0;
1540 }
1541
1542 Expression *ComplexExp::semantic(Scope *sc)
1543 {
1544 if (!type)
1545 type = Type::tcomplex80;
1546 else
1547 type = type->semantic(loc, sc);
1548 return this;
1549 }
1550
1551 int ComplexExp::isBool(int result)
1552 {
1553 if (result)
1554 return (bool)(value);
1555 else
1556 return !value;
1557 }
1558
1559 void ComplexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
1560 {
1561 /* Print as:
1562 * (re+imi)
1563 */
1564 #ifdef IN_GCC
1565 char buf1[sizeof(value) * 3 + 8 + 1];
1566 char buf2[sizeof(value) * 3 + 8 + 1];
1567 creall(value).format(buf1, sizeof(buf1));
1568 cimagl(value).format(buf2, sizeof(buf2));
1569 buf->printf("(%s+%si)", buf1, buf2);
1570 #else
1571 buf->writeByte('(');
1572 floatToBuffer(buf, type, creall(value));
1573 buf->writeByte('+');
1574 floatToBuffer(buf, type, cimagl(value));
1575 buf->writestring("i)");
1576 #endif
1577 }
1578
1579 void ComplexExp::toMangleBuffer(OutBuffer *buf)
1580 {
1581 buf->writeByte('c');
1582 real_t r = toReal();
1583 realToMangleBuffer(buf, r);
1584 buf->writeByte('c'); // separate the two
1585 r = toImaginary();
1586 realToMangleBuffer(buf, r);
1587 }
1588
1589 /******************************** IdentifierExp **************************/
1590
1591 IdentifierExp::IdentifierExp(Loc loc, Identifier *ident)
1592 : Expression(loc, TOKidentifier, sizeof(IdentifierExp))
1593 {
1594 this->ident = ident;
1595 }
1596
1597 Expression *IdentifierExp::semantic(Scope *sc)
1598 {
1599 Dsymbol *s;
1600 Dsymbol *scopesym;
1601
1602 #if LOGSEMANTIC
1603 printf("IdentifierExp::semantic('%s')\n", ident->toChars());
1604 #endif
1605 s = sc->search(loc, ident, &scopesym);
1606 if (s)
1607 { Expression *e;
1608 WithScopeSymbol *withsym;
1609
1610 // See if it was a with class
1611 withsym = scopesym->isWithScopeSymbol();
1612 if (withsym)
1613 {
1614 s = s->toAlias();
1615
1616 // Same as wthis.ident
1617 if (s->needThis() || s->isTemplateDeclaration())
1618 {
1619 e = new VarExp(loc, withsym->withstate->wthis);
1620 e = new DotIdExp(loc, e, ident);
1621 }
1622 else
1623 { Type *t = withsym->withstate->wthis->type;
1624 if (t->ty == Tpointer)
1625 t = t->next;
1626 e = new TypeDotIdExp(loc, t, ident);
1627 }
1628 }
1629 else
1630 {
1631 if (!s->parent && scopesym->isArrayScopeSymbol())
1632 { // Kludge to run semantic() here because
1633 // ArrayScopeSymbol::search() doesn't have access to sc.
1634 s->semantic(sc);
1635 }
1636 // Look to see if f is really a function template
1637 FuncDeclaration *f = s->isFuncDeclaration();
1638 if (f && f->parent)
1639 { TemplateInstance *ti = f->parent->isTemplateInstance();
1640
1641 if (ti &&
1642 !ti->isTemplateMixin() &&
1643 (ti->name == f->ident ||
1644 ti->toAlias()->ident == f->ident)
1645 &&
1646 ti->tempdecl && ti->tempdecl->onemember)
1647 {
1648 TemplateDeclaration *tempdecl = ti->tempdecl;
1649 if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's
1650 tempdecl = tempdecl->overroot; // then get the start
1651 e = new TemplateExp(loc, tempdecl);
1652 e = e->semantic(sc);
1653 return e;
1654 }
1655 }
1656 e = new DsymbolExp(loc, s);
1657 }
1658 return e->semantic(sc);
1659 }
1660 error("undefined identifier %s", ident->toChars());
1661 type = Type::terror;
1662 return this;
1663 }
1664
1665 char *IdentifierExp::toChars()
1666 {
1667 return ident->toChars();
1668 }
1669
1670 void IdentifierExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
1671 {
1672 if (hgs->hdrgen)
1673 buf->writestring(ident->toHChars2());
1674 else
1675 buf->writestring(ident->toChars());
1676 }
1677
1678 Expression *IdentifierExp::toLvalue(Scope *sc, Expression *e)
1679 {
1680 #if 0
1681 tym = tybasic(e1->ET->Tty);
1682 if (!(tyscalar(tym) ||
1683 tym == TYstruct ||
1684 tym == TYarray && e->Eoper == TOKaddr))
1685 synerr(EM_lvalue); // lvalue expected
1686 #endif
1687 return this;
1688 }
1689
1690 /******************************** DollarExp **************************/
1691
1692 DollarExp::DollarExp(Loc loc)
1693 : IdentifierExp(loc, Id::dollar)
1694 {
1695 }
1696
1697 /******************************** DsymbolExp **************************/
1698
1699 DsymbolExp::DsymbolExp(Loc loc, Dsymbol *s)
1700 : Expression(loc, TOKdsymbol, sizeof(DsymbolExp))
1701 {
1702 this->s = s;
1703 }
1704
1705 Expression *DsymbolExp::semantic(Scope *sc)
1706 {
1707 #if LOGSEMANTIC
1708 printf("DsymbolExp::semantic('%s')\n", s->toChars());
1709 #endif
1710
1711 Lagain:
1712 EnumMember *em;
1713 Expression *e;
1714 VarDeclaration *v;
1715 FuncDeclaration *f;
1716 FuncLiteralDeclaration *fld;
1717 Declaration *d;
1718 ClassDeclaration *cd;
1719 ClassDeclaration *thiscd = NULL;
1720 Import *imp;
1721 Package *pkg;
1722 Type *t;
1723
1724 //printf("DsymbolExp:: %p '%s' is a symbol\n", this, toChars());
1725 //printf("s = '%s', s->kind = '%s'\n", s->toChars(), s->kind());
1726 if (type)
1727 return this;
1728 if (!s->isFuncDeclaration()) // functions are checked after overloading
1729 checkDeprecated(sc, s);
1730 s = s->toAlias();
1731 //printf("s = '%s', s->kind = '%s', s->needThis() = %p\n", s->toChars(), s->kind(), s->needThis());
1732 if (!s->isFuncDeclaration())
1733 checkDeprecated(sc, s);
1734
1735 if (sc->func)
1736 thiscd = sc->func->parent->isClassDeclaration();
1737
1738 // BUG: This should happen after overload resolution for functions, not before
1739 if (s->needThis())
1740 {
1741 if (hasThis(sc) /*&& !s->isFuncDeclaration()*/)
1742 {
1743 // Supply an implicit 'this', as in
1744 // this.ident
1745
1746 DotVarExp *de;
1747
1748 de = new DotVarExp(loc, new ThisExp(loc), s->isDeclaration());
1749 return de->semantic(sc);
1750 }
1751 }
1752
1753 em = s->isEnumMember();
1754 if (em)
1755 {
1756 e = em->value;
1757 e = e->semantic(sc);
1758 return e;
1759 }
1760 v = s->isVarDeclaration();
1761 if (v)
1762 {
1763 //printf("Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars());
1764 if (!type)
1765 { type = v->type;
1766 if (!v->type)
1767 { error("forward reference of %s", v->toChars());
1768 type = Type::terror;
1769 }
1770 }
1771 if (v->isConst() && type->toBasetype()->ty != Tsarray)
1772 {
1773 if (v->init)
1774 {
1775 if (v->inuse)
1776 {
1777 error("circular reference to '%s'", v->toChars());
1778 type = Type::tint32;
1779 return this;
1780 }
1781 ExpInitializer *ei = v->init->isExpInitializer();
1782 if (ei)
1783 {
1784 e = ei->exp->copy(); // make copy so we can change loc
1785 if (e->op == TOKstring || !e->type)
1786 e = e->semantic(sc);
1787 e = e->implicitCastTo(sc, type);
1788 e->loc = loc;
1789 return e;
1790 }
1791 }
1792 else
1793 {
1794 e = type->defaultInit();
1795 e->loc = loc;
1796 return e;
1797 }
1798 }
1799 e = new VarExp(loc, v);
1800 e->type = type;
1801 e = e->semantic(sc);
1802 return e->deref();
1803 }
1804 fld = s->isFuncLiteralDeclaration();
1805 if (fld)
1806 { //printf("'%s' is a function literal\n", fld->toChars());
1807 e = new FuncExp(loc, fld);
1808 return e->semantic(sc);
1809 }
1810 f = s->isFuncDeclaration();
1811 if (f)
1812 { //printf("'%s' is a function\n", f->toChars());
1813 return new VarExp(loc, f);
1814 }
1815 cd = s->isClassDeclaration();
1816 if (cd && thiscd && cd->isBaseOf(thiscd, NULL) && sc->func->needThis())
1817 {
1818 // We need to add an implicit 'this' if cd is this class or a base class.
1819 DotTypeExp *dte;
1820
1821 dte = new DotTypeExp(loc, new ThisExp(loc), s);
1822 return dte->semantic(sc);
1823 }
1824 imp = s->isImport();
1825 if (imp)
1826 {
1827 ScopeExp *ie;
1828
1829 ie = new ScopeExp(loc, imp->pkg);
1830 return ie->semantic(sc);
1831 }
1832 pkg = s->isPackage();
1833 if (pkg)
1834 {
1835 ScopeExp *ie;
1836
1837 ie = new ScopeExp(loc, pkg);
1838 return ie->semantic(sc);
1839 }
1840 Module *mod = s->isModule();
1841 if (mod)
1842 {
1843 ScopeExp *ie;
1844
1845 ie = new ScopeExp(loc, mod);
1846 return ie->semantic(sc);
1847 }
1848
1849 t = s->getType();
1850 if (t)
1851 {
1852 return new TypeExp(loc, t);
1853 }
1854
1855 TupleDeclaration *tup = s->isTupleDeclaration();
1856 if (tup)
1857 {
1858 e = new TupleExp(loc, tup);
1859 e = e->semantic(sc);
1860 return e;
1861 }
1862
1863 TemplateInstance *ti = s->isTemplateInstance();
1864 if (ti && !global.errors)
1865 { if (!ti->semanticdone)
1866 ti->semantic(sc);
1867 s = ti->inst->toAlias();
1868 if (!s->isTemplateInstance())
1869 goto Lagain;
1870 e = new ScopeExp(loc, ti);
1871 e = e->semantic(sc);
1872 return e;
1873 }
1874
1875 TemplateDeclaration *td = s->isTemplateDeclaration();
1876 if (td)
1877 {
1878 e = new TemplateExp(loc, td);
1879 e = e->semantic(sc);
1880 return e;
1881 }
1882
1883 Lerr:
1884 error("%s '%s' is not a variable", s->kind(), s->toChars());
1885 type = Type::terror;
1886 return this;
1887 }
1888
1889 char *DsymbolExp::toChars()
1890 {
1891 return s->toChars();
1892 }
1893
1894 void DsymbolExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
1895 {
1896 buf->writestring(s->toChars());
1897 }
1898
1899 Expression *DsymbolExp::toLvalue(Scope *sc, Expression *e)
1900 {
1901 #if 0
1902 tym = tybasic(e1->ET->Tty);
1903 if (!(tyscalar(tym) ||
1904 tym == TYstruct ||
1905 tym == TYarray && e->Eoper == TOKaddr))
1906 synerr(EM_lvalue); // lvalue expected
1907 #endif
1908 return this;
1909 }
1910
1911 /******************************** ThisExp **************************/
1912
1913 ThisExp::ThisExp(Loc loc)
1914 : Expression(loc, TOKthis, sizeof(ThisExp))
1915 {
1916 var = NULL;
1917 }
1918
1919 Expression *ThisExp::semantic(Scope *sc)
1920 { FuncDeclaration *fd;
1921 FuncDeclaration *fdthis;
1922 int nested = 0;
1923
1924 #if LOGSEMANTIC
1925 printf("ThisExp::semantic()\n");
1926 #endif
1927 if (type)
1928 { //assert(global.errors || var);
1929 return this;
1930 }
1931
1932 /* Special case for typeof(this) and typeof(super) since both
1933 * should work even if they are not inside a non-static member function
1934 */
1935 if (sc->intypeof)
1936 {
1937 // Find enclosing struct or class
1938 for (Dsymbol *s = sc->parent; 1; s = s->parent)
1939 {
1940 ClassDeclaration *cd;
1941 StructDeclaration *sd;
1942
1943 if (!s)
1944 {
1945 error("%s is not in a struct or class scope", toChars());
1946 goto Lerr;
1947 }
1948 cd = s->isClassDeclaration();
1949 if (cd)
1950 {
1951 type = cd->type;
1952 return this;
1953 }
1954 sd = s->isStructDeclaration();
1955 if (sd)
1956 {
1957 type = sd->type->pointerTo();
1958 return this;
1959 }
1960 }
1961 }
1962
1963 fdthis = sc->parent->isFuncDeclaration();
1964 fd = hasThis(sc); // fd is the uplevel function with the 'this' variable
1965 if (!fd)
1966 goto Lerr;
1967
1968 assert(fd->vthis);
1969 var = fd->vthis;
1970 assert(var->parent);
1971 type = var->type;
1972 var->isVarDeclaration()->checkNestedReference(sc, loc);
1973 #if 0
1974 if (fd != fdthis) // if nested
1975 {
1976 fdthis->getLevel(loc, fd);
1977 fd->vthis->nestedref = 1;
1978 fd->nestedFrameRef = 1;
1979 }
1980 #endif
1981 sc->callSuper |= CSXthis;
1982 return this;
1983
1984 Lerr:
1985 error("'this' is only allowed in non-static member functions, not %s", sc->parent->toChars());
1986 type = Type::tint32;
1987 return this;
1988 }
1989
1990 int ThisExp::isBool(int result)
1991 {
1992 return result ? TRUE : FALSE;
1993 }
1994
1995 void ThisExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
1996 {
1997 buf->writestring("this");
1998 }
1999
2000 Expression *ThisExp::toLvalue(Scope *sc, Expression *e)
2001 {
2002 return this;
2003 }
2004
2005 /******************************** SuperExp **************************/
2006
2007 SuperExp::SuperExp(Loc loc)
2008 : ThisExp(loc)
2009 {
2010 op = TOKsuper;
2011 }
2012
2013 Expression *SuperExp::semantic(Scope *sc)
2014 { FuncDeclaration *fd;
2015 FuncDeclaration *fdthis;
2016 ClassDeclaration *cd;
2017 Dsymbol *s;
2018
2019 #if LOGSEMANTIC
2020 printf("SuperExp::semantic('%s')\n", toChars());
2021 #endif
2022 if (type)
2023 return this;
2024
2025 /* Special case for typeof(this) and typeof(super) since both
2026 * should work even if they are not inside a non-static member function
2027 */
2028 if (sc->intypeof)
2029 {
2030 // Find enclosing class
2031 for (Dsymbol *s = sc->parent; 1; s = s->parent)
2032 {
2033 ClassDeclaration *cd;
2034
2035 if (!s)
2036 {
2037 error("%s is not in a class scope", toChars());
2038 goto Lerr;
2039 }
2040 cd = s->isClassDeclaration();
2041 if (cd)
2042 {
2043 cd = cd->baseClass;
2044 if (!cd)
2045 { error("class %s has no 'super'", s->toChars());
2046 goto Lerr;
2047 }
2048 type = cd->type;
2049 return this;
2050 }
2051 }
2052 }
2053
2054 fdthis = sc->parent->isFuncDeclaration();
2055 fd = hasThis(sc);
2056 if (!fd)
2057 goto Lerr;
2058 assert(fd->vthis);
2059 var = fd->vthis;
2060 assert(var->parent);
2061
2062 s = fd->toParent();
2063 while (s && s->isTemplateInstance())
2064 s = s->toParent();
2065 assert(s);
2066 cd = s->isClassDeclaration();
2067 //printf("parent is %s %s\n", fd->toParent()->kind(), fd->toParent()->toChars());
2068 if (!cd)
2069 goto Lerr;
2070 if (!cd->baseClass)
2071 {
2072 error("no base class for %s", cd->toChars());
2073 type = fd->vthis->type;
2074 }
2075 else
2076 {
2077 type = cd->baseClass->type;
2078 }
2079
2080 var->isVarDeclaration()->checkNestedReference(sc, loc);
2081 #if 0
2082 if (fd != fdthis)
2083 {
2084 fdthis->getLevel(loc, fd);
2085 fd->vthis->nestedref = 1;
2086 fd->nestedFrameRef = 1;
2087 }
2088 #endif
2089
2090 sc->callSuper |= CSXsuper;
2091 return this;
2092
2093
2094 Lerr:
2095 error("'super' is only allowed in non-static class member functions");
2096 type = Type::tint32;
2097 return this;
2098 }
2099
2100 void SuperExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2101 {
2102 buf->writestring("super");
2103 }
2104
2105
2106 /******************************** NullExp **************************/
2107
2108 NullExp::NullExp(Loc loc)
2109 : Expression(loc, TOKnull, sizeof(NullExp))
2110 {
2111 committed = 0;
2112 }
2113
2114 Expression *NullExp::semantic(Scope *sc)
2115 {
2116 #if LOGSEMANTIC
2117 printf("NullExp::semantic('%s')\n", toChars());
2118 #endif
2119 // NULL is the same as (void *)0
2120 if (!type)
2121 type = Type::tvoid->pointerTo();
2122 return this;
2123 }
2124
2125 int NullExp::isBool(int result)
2126 {
2127 return result ? FALSE : TRUE;
2128 }
2129
2130 void NullExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2131 {
2132 buf->writestring("null");
2133 }
2134
2135 void NullExp::toMangleBuffer(OutBuffer *buf)
2136 {
2137 buf->writeByte('n');
2138 }
2139
2140 /******************************** StringExp **************************/
2141
2142 StringExp::StringExp(Loc loc, char *string)
2143 : Expression(loc, TOKstring, sizeof(StringExp))
2144 {
2145 this->string = string;
2146 this->len = strlen(string);
2147 this->sz = 1;
2148 this->committed = 0;
2149 this->postfix = 0;
2150 }
2151
2152 StringExp::StringExp(Loc loc, void *string, size_t len)
2153 : Expression(loc, TOKstring, sizeof(StringExp))
2154 {
2155 this->string = string;
2156 this->len = len;
2157 this->sz = 1;
2158 this->committed = 0;
2159 this->postfix = 0;
2160 }
2161
2162 StringExp::StringExp(Loc loc, void *string, size_t len, unsigned char postfix)
2163 : Expression(loc, TOKstring, sizeof(StringExp))
2164 {
2165 this->string = string;
2166 this->len = len;
2167 this->sz = 1;
2168 this->committed = 0;
2169 this->postfix = postfix;
2170 }
2171
2172 #if 0
2173 Expression *StringExp::syntaxCopy()
2174 {
2175 printf("StringExp::syntaxCopy() %s\n", toChars());
2176 return copy();
2177 }
2178 #endif
2179
2180 int StringExp::equals(Object *o)
2181 {
2182 //printf("StringExp::equals('%s')\n", o->toChars());
2183 if (o && o->dyncast() == DYNCAST_EXPRESSION)
2184 { Expression *e = (Expression *)o;
2185
2186 if (e->op == TOKstring)
2187 {
2188 return compare(o) == 0;
2189 }
2190 }
2191 return FALSE;
2192 }
2193
2194 char *StringExp::toChars()
2195 {
2196 OutBuffer buf;
2197 HdrGenState hgs;
2198 char *p;
2199
2200 memset(&hgs, 0, sizeof(hgs));
2201 toCBuffer(&buf, &hgs);
2202 buf.writeByte(0);
2203 p = (char *)buf.data;
2204 buf.data = NULL;
2205 return p;
2206 }
2207
2208 Expression *StringExp::semantic(Scope *sc)
2209 {
2210 #if LOGSEMANTIC
2211 printf("StringExp::semantic() %s\n", toChars());
2212 #endif
2213 if (!type)
2214 { OutBuffer buffer;
2215 size_t newlen = 0;
2216 char *p;
2217 size_t u;
2218 unsigned c;
2219
2220 switch (postfix)
2221 {
2222 case 'd':
2223 for (u = 0; u < len;)
2224 {
2225 p = utf_decodeChar((unsigned char *)string, len, &u, &c);
2226 if (p)
2227 { error("%s", p);
2228 break;
2229 }
2230 else
2231 { buffer.write4(c);
2232 newlen++;
2233 }
2234 }
2235 buffer.write4(0);
2236 string = buffer.extractData();
2237 len = newlen;
2238 sz = 4;
2239 type = new TypeSArray(Type::tdchar, new IntegerExp(loc, len, Type::tindex));
2240 committed = 1;
2241 break;
2242
2243 case 'w':
2244 for (u = 0; u < len;)
2245 {
2246 p = utf_decodeChar((unsigned char *)string, len, &u, &c);
2247 if (p)
2248 { error("%s", p);
2249 break;
2250 }
2251 else
2252 { buffer.writeUTF16(c);
2253 newlen++;
2254 if (c >= 0x10000)
2255 newlen++;
2256 }
2257 }
2258 buffer.writeUTF16(0);
2259 string = buffer.extractData();
2260 len = newlen;
2261 sz = 2;
2262 type = new TypeSArray(Type::twchar, new IntegerExp(loc, len, Type::tindex));
2263 committed = 1;
2264 break;
2265
2266 case 'c':
2267 committed = 1;
2268 default:
2269 type = new TypeSArray(Type::tchar, new IntegerExp(loc, len, Type::tindex));
2270 break;
2271 }
2272 type = type->semantic(loc, sc);
2273 }
2274 return this;
2275 }
2276
2277 /****************************************
2278 * Convert string to char[].
2279 */
2280
2281 StringExp *StringExp::toUTF8(Scope *sc)
2282 {
2283 if (sz != 1)
2284 { // Convert to UTF-8 string
2285 committed = 0;
2286 Expression *e = castTo(sc, Type::tchar->arrayOf());
2287 e = e->optimize(WANTvalue);
2288 assert(e->op == TOKstring);
2289 StringExp *se = (StringExp *)e;
2290 assert(se->sz == 1);
2291 return se;
2292 }
2293 return this;
2294 }
2295
2296 int StringExp::compare(Object *obj)
2297 {
2298 // Used to sort case statement expressions so we can do an efficient lookup
2299 StringExp *se2 = (StringExp *)(obj);
2300
2301 // This is a kludge so isExpression() in template.c will return 5
2302 // for StringExp's.
2303 if (!se2)
2304 return 5;
2305
2306 assert(se2->op == TOKstring);
2307
2308 int len1 = len;
2309 int len2 = se2->len;
2310
2311 if (len1 == len2)
2312 {
2313 switch (sz)
2314 {
2315 case 1:
2316 return strcmp((char *)string, (char *)se2->string);
2317
2318 case 2:
2319 { unsigned u;
2320 d_wchar *s1 = (d_wchar *)string;
2321 d_wchar *s2 = (d_wchar *)se2->string;
2322
2323 for (u = 0; u < len; u++)
2324 {
2325 if (s1[u] != s2[u])
2326 return s1[u] - s2[u];
2327 }
2328 }
2329
2330 case 4:
2331 { unsigned u;
2332 d_dchar *s1 = (d_dchar *)string;
2333 d_dchar *s2 = (d_dchar *)se2->string;
2334
2335 for (u = 0; u < len; u++)
2336 {
2337 if (s1[u] != s2[u])
2338 return s1[u] - s2[u];
2339 }
2340 }
2341 break;
2342
2343 default:
2344 assert(0);
2345 }
2346 }
2347 return len1 - len2;
2348 }
2349
2350 int StringExp::isBool(int result)
2351 {
2352 return result ? TRUE : FALSE;
2353 }
2354
2355 void StringExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2356 {
2357 buf->writeByte('"');
2358 for (size_t i = 0; i < len; i++)
2359 { unsigned c;
2360
2361 switch (sz)
2362 {
2363 case 1:
2364 c = ((unsigned char *)string)[i];
2365 break;
2366 case 2:
2367 c = ((unsigned short *)string)[i];
2368 break;
2369 case 4:
2370 c = ((unsigned *)string)[i];
2371 break;
2372 default:
2373 assert(0);
2374 }
2375 switch (c)
2376 {
2377 case '"':
2378 case '\\':
2379 if (!hgs->console)
2380 buf->writeByte('\\');
2381 default:
2382 if (c <= 0xFF)
2383 { if (c <= 0x7F && (isprint(c) || hgs->console))
2384 buf->writeByte(c);
2385 else
2386 buf->printf("\\x%02x", c);
2387 }
2388 else if (c <= 0xFFFF)
2389 buf->printf("\\x%02x\\x%02x", c & 0xFF, c >> 8);
2390 else
2391 buf->printf("\\x%02x\\x%02x\\x%02x\\x%02x",
2392 c & 0xFF, (c >> 8) & 0xFF, (c >> 16) & 0xFF, c >> 24);
2393 break;
2394 }
2395 }
2396 buf->writeByte('"');
2397 if (postfix)
2398 buf->writeByte(postfix);
2399 }
2400
2401 void StringExp::toMangleBuffer(OutBuffer *buf)
2402 { char m;
2403 OutBuffer tmp;
2404 char *p;
2405 unsigned c;
2406 size_t u;
2407 unsigned char *q;
2408 unsigned qlen;
2409
2410 /* Write string in UTF-8 format
2411 */
2412 switch (sz)
2413 { case 1:
2414 m = 'a';
2415 q = (unsigned char *)string;
2416 qlen = len;
2417 break;
2418 case 2:
2419 m = 'w';
2420 for (u = 0; u < len; )
2421 {
2422 p = utf_decodeWchar((unsigned short *)string, len, &u, &c);
2423 if (p)
2424 error("%s", p);
2425 else
2426 tmp.writeUTF8(c);
2427 }
2428 q = tmp.data;
2429 qlen = tmp.offset;
2430 break;
2431 case 4:
2432 m = 'd';
2433 for (u = 0; u < len; u++)
2434 {
2435 c = ((unsigned *)string)[u];
2436 if (!utf_isValidDchar(c))
2437 error("invalid UCS-32 char \\U%08x", c);
2438 else
2439 tmp.writeUTF8(c);
2440 }
2441 q = tmp.data;
2442 qlen = tmp.offset;
2443 break;
2444 default:
2445 assert(0);
2446 }
2447 buf->writeByte(m);
2448 buf->printf("%d_", qlen);
2449 for (size_t i = 0; i < qlen; i++)
2450 buf->printf("%02x", q[i]);
2451 }
2452
2453 /************************ ArrayLiteralExp ************************************/
2454
2455 // [ e1, e2, e3, ... ]
2456
2457 ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expressions *elements)
2458 : Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp))
2459 {
2460 this->elements = elements;
2461 }
2462
2463 ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expression *e)
2464 : Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp))
2465 {
2466 elements = new Expressions;
2467 elements->push(e);
2468 }
2469
2470 Expression *ArrayLiteralExp::syntaxCopy()
2471 {
2472 return new ArrayLiteralExp(loc, arraySyntaxCopy(elements));
2473 }
2474
2475 Expression *ArrayLiteralExp::semantic(Scope *sc)
2476 { Expression *e;
2477 Type *t0 = NULL;
2478
2479 #if LOGSEMANTIC
2480 printf("ArrayLiteralExp::semantic('%s')\n", toChars());
2481 #endif
2482
2483 // Run semantic() on each element
2484 for (int i = 0; i < elements->dim; i++)
2485 { e = (Expression *)elements->data[i];
2486 e = e->semantic(sc);
2487 elements->data[i] = (void *)e;
2488 }
2489 expandTuples(elements);
2490 for (int i = 0; i < elements->dim; i++)
2491 { e = (Expression *)elements->data[i];
2492
2493 if (!e->type)
2494 error("%s has no value", e->toChars());
2495 e = resolveProperties(sc, e);
2496
2497 unsigned char committed = 1;
2498 if (e->op == TOKstring)
2499 committed = ((StringExp *)e)->committed;
2500
2501 if (!t0)
2502 { t0 = e->type;
2503 // Convert any static arrays to dynamic arrays
2504 if (t0->ty == Tsarray)
2505 {
2506 t0 = t0->next->arrayOf();
2507 e = e->implicitCastTo(sc, t0);
2508 }
2509 }
2510 else
2511 e = e->implicitCastTo(sc, t0);
2512 if (!committed && e->op == TOKstring)
2513 { StringExp *se = (StringExp *)e;
2514 se->committed = 0;
2515 }
2516 elements->data[i] = (void *)e;
2517 }
2518
2519 if (!t0)
2520 t0 = Type::tvoid;
2521 type = new TypeSArray(t0, new IntegerExp(elements->dim));
2522 type = type->semantic(loc, sc);
2523 return this;
2524 }
2525
2526 int ArrayLiteralExp::checkSideEffect(int flag)
2527 { int f = 0;
2528
2529 for (size_t i = 0; i < elements->dim; i++)
2530 { Expression *e = (Expression *)elements->data[i];
2531
2532 f |= e->checkSideEffect(2);
2533 }
2534 if (flag == 0 && f == 0)
2535 Expression::checkSideEffect(0);
2536 return f;
2537 }
2538
2539 int ArrayLiteralExp::isBool(int result)
2540 {
2541 size_t dim = elements ? elements->dim : 0;
2542 return result ? (dim != 0) : (dim == 0);
2543 }
2544
2545 void ArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2546 {
2547 buf->writeByte('[');
2548 argsToCBuffer(buf, elements, hgs);
2549 buf->writeByte(']');
2550 }
2551
2552 void ArrayLiteralExp::toMangleBuffer(OutBuffer *buf)
2553 {
2554 size_t dim = elements ? elements->dim : 0;
2555 buf->printf("A%u", dim);
2556 for (size_t i = 0; i < dim; i++)
2557 { Expression *e = (Expression *)elements->data[i];
2558 e->toMangleBuffer(buf);
2559 }
2560 }
2561
2562 /************************ AssocArrayLiteralExp ************************************/
2563
2564 // [ key0 : value0, key1 : value1, ... ]
2565
2566 AssocArrayLiteralExp::AssocArrayLiteralExp(Loc loc,
2567 Expressions *keys, Expressions *values)
2568 : Expression(loc, TOKassocarrayliteral, sizeof(AssocArrayLiteralExp))
2569 {
2570 assert(keys->dim == values->dim);
2571 this->keys = keys;
2572 this->values = values;
2573 }
2574
2575 Expression *AssocArrayLiteralExp::syntaxCopy()
2576 {
2577 return new AssocArrayLiteralExp(loc,
2578 arraySyntaxCopy(keys), arraySyntaxCopy(values));
2579 }
2580
2581 Expression *AssocArrayLiteralExp::semantic(Scope *sc)
2582 { Expression *e;
2583 Type *tkey = NULL;
2584 Type *tvalue = NULL;
2585
2586 #if LOGSEMANTIC
2587 printf("AssocArrayLiteralExp::semantic('%s')\n", toChars());
2588 #endif
2589
2590 // Run semantic() on each element
2591 for (size_t i = 0; i < keys->dim; i++)
2592 { Expression *key = (Expression *)keys->data[i];
2593 Expression *value = (Expression *)values->data[i];
2594
2595 key = key->semantic(sc);
2596 value = value->semantic(sc);
2597
2598 keys->data[i] = (void *)key;
2599 values->data[i] = (void *)value;
2600 }
2601 expandTuples(keys);
2602 expandTuples(values);
2603 if (keys->dim != values->dim)
2604 {
2605 error("number of keys is %u, must match number of values %u", keys->dim, values->dim);
2606 keys->setDim(0);
2607 values->setDim(0);
2608 }
2609 for (size_t i = 0; i < keys->dim; i++)
2610 { Expression *key = (Expression *)keys->data[i];
2611 Expression *value = (Expression *)values->data[i];
2612
2613 if (!key->type)
2614 error("%s has no value", key->toChars());
2615 if (!value->type)
2616 error("%s has no value", value->toChars());
2617 key = resolveProperties(sc, key);
2618 value = resolveProperties(sc, value);
2619
2620 if (!tkey)
2621 tkey = key->type;
2622 else
2623 key = key->implicitCastTo(sc, tkey);
2624 keys->data[i] = (void *)key;
2625
2626 if (!tvalue)
2627 tvalue = value->type;
2628 else
2629 value = value->implicitCastTo(sc, tvalue);
2630 values->data[i] = (void *)value;
2631 }
2632
2633 if (!tkey)
2634 tkey = Type::tvoid;
2635 if (!tvalue)
2636 tvalue = Type::tvoid;
2637 type = new TypeAArray(tvalue, tkey);
2638 type = type->semantic(loc, sc);
2639 return this;
2640 }
2641
2642 int AssocArrayLiteralExp::checkSideEffect(int flag)
2643 { int f = 0;
2644
2645 for (size_t i = 0; i < keys->dim; i++)
2646 { Expression *key = (Expression *)keys->data[i];
2647 Expression *value = (Expression *)values->data[i];
2648
2649 f |= key->checkSideEffect(2);
2650 f |= value->checkSideEffect(2);
2651 }
2652 if (flag == 0 && f == 0)
2653 Expression::checkSideEffect(0);
2654 return f;
2655 }
2656
2657 int AssocArrayLiteralExp::isBool(int result)
2658 {
2659 size_t dim = keys->dim;
2660 return result ? (dim != 0) : (dim == 0);
2661 }
2662
2663 void AssocArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2664 {
2665 buf->writeByte('[');
2666 for (size_t i = 0; i < keys->dim; i++)
2667 { Expression *key = (Expression *)keys->data[i];
2668 Expression *value = (Expression *)values->data[i];
2669
2670 if (i)
2671 buf->writeByte(',');
2672 expToCBuffer(buf, hgs, key, PREC_assign);
2673 buf->writeByte(':');
2674 expToCBuffer(buf, hgs, value, PREC_assign);
2675 }
2676 buf->writeByte(']');
2677 }
2678
2679 void AssocArrayLiteralExp::toMangleBuffer(OutBuffer *buf)
2680 {
2681 size_t dim = keys->dim;
2682 buf->printf("A%u", dim);
2683 for (size_t i = 0; i < dim; i++)
2684 { Expression *key = (Expression *)keys->data[i];
2685 Expression *value = (Expression *)values->data[i];
2686
2687 key->toMangleBuffer(buf);
2688 value->toMangleBuffer(buf);
2689 }
2690 }
2691
2692 /************************ StructLiteralExp ************************************/
2693
2694 // sd( e1, e2, e3, ... )
2695
2696 StructLiteralExp::StructLiteralExp(Loc loc, StructDeclaration *sd, Expressions *elements)
2697 : Expression(loc, TOKstructliteral, sizeof(StructLiteralExp))
2698 {
2699 this->sd = sd;
2700 this->elements = elements;
2701 this->sym = NULL;
2702 this->soffset = 0;
2703 this->fillHoles = 1;
2704 }
2705
2706 Expression *StructLiteralExp::syntaxCopy()
2707 {
2708 return new StructLiteralExp(loc, sd, arraySyntaxCopy(elements));
2709 }
2710
2711 Expression *StructLiteralExp::semantic(Scope *sc)
2712 { Expression *e;
2713
2714 #if LOGSEMANTIC
2715 printf("StructLiteralExp::semantic('%s')\n", toChars());
2716 #endif
2717
2718 // Run semantic() on each element
2719 for (size_t i = 0; i < elements->dim; i++)
2720 { e = (Expression *)elements->data[i];
2721 if (!e)
2722 continue;
2723 e = e->semantic(sc);
2724 elements->data[i] = (void *)e;
2725 }
2726 expandTuples(elements);
2727 size_t offset = 0;
2728 for (size_t i = 0; i < elements->dim; i++)
2729 { e = (Expression *)elements->data[i];
2730 if (!e)
2731 continue;
2732
2733 if (!e->type)
2734 error("%s has no value", e->toChars());
2735 e = resolveProperties(sc, e);
2736 if (i >= sd->fields.dim)
2737 { error("more initializers than fields of %s", sd->toChars());
2738 break;
2739 }
2740 Dsymbol *s = (Dsymbol *)sd->fields.data[i];
2741 VarDeclaration *v = s->isVarDeclaration();
2742 assert(v);
2743 if (v->offset < offset)
2744 error("overlapping initialization for %s", v->toChars());
2745 offset = v->offset + v->type->size();
2746
2747 Type *telem = v->type;
2748 while (!e->implicitConvTo(telem) && telem->toBasetype()->ty == Tsarray)
2749 { /* Static array initialization, as in:
2750 * T[3][5] = e;
2751 */
2752 telem = telem->toBasetype()->nextOf();
2753 }
2754
2755 e = e->implicitCastTo(sc, telem);
2756
2757 elements->data[i] = (void *)e;
2758 }
2759
2760 /* Fill out remainder of elements[] with default initializers for fields[]
2761 */
2762 for (size_t i = elements->dim; i < sd->fields.dim; i++)
2763 { Dsymbol *s = (Dsymbol *)sd->fields.data[i];
2764 VarDeclaration *v = s->isVarDeclaration();
2765 assert(v);
2766
2767 if (v->offset < offset)
2768 { e = NULL;
2769 sd->hasUnions = 1;
2770 }
2771 else
2772 {
2773 if (v->init)
2774 { e = v->init->toExpression();
2775 if (!e)
2776 error("cannot make expression out of initializer for %s", v->toChars());
2777 }
2778 else
2779 { e = v->type->defaultInit();
2780 e->loc = loc;
2781 }
2782 offset = v->offset + v->type->size();
2783 }
2784 elements->push(e);
2785 }
2786
2787 type = sd->type;
2788 return this;
2789 }
2790
2791 /**************************************
2792 * Gets expression at offset of type.
2793 * Returns NULL if not found.
2794 */
2795
2796 Expression *StructLiteralExp::getField(Type *type, unsigned offset)
2797 { Expression *e = NULL;
2798 int i = getFieldIndex(type, offset);
2799
2800 if (i != -1)
2801 { e = (Expression *)elements->data[i];
2802 if (e)
2803 {
2804 e = e->copy();
2805 e->type = type;
2806 }
2807 }
2808 return e;
2809 }
2810
2811 /************************************
2812 * Get index of field.
2813 * Returns -1 if not found.
2814 */
2815
2816 int StructLiteralExp::getFieldIndex(Type *type, unsigned offset)
2817 {
2818 /* Find which field offset is by looking at the field offsets
2819 */
2820 for (size_t i = 0; i < sd->fields.dim; i++)
2821 {
2822 Dsymbol *s = (Dsymbol *)sd->fields.data[i];
2823 VarDeclaration *v = s->isVarDeclaration();
2824 assert(v);
2825
2826 if (offset == v->offset &&
2827 type->size() == v->type->size())
2828 { Expression *e = (Expression *)elements->data[i];
2829 if (e)
2830 {
2831 return i;
2832 }
2833 break;
2834 }
2835 }
2836 return -1;
2837 }
2838
2839
2840 Expression *StructLiteralExp::toLvalue(Scope *sc, Expression *e)
2841 {
2842 return this;
2843 }
2844
2845
2846 int StructLiteralExp::checkSideEffect(int flag)
2847 { int f = 0;
2848
2849 for (size_t i = 0; i < elements->dim; i++)
2850 { Expression *e = (Expression *)elements->data[i];
2851 if (!e)
2852 continue;
2853
2854 f |= e->checkSideEffect(2);
2855 }
2856 if (flag == 0 && f == 0)
2857 Expression::checkSideEffect(0);
2858 return f;
2859 }
2860
2861 void StructLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2862 {
2863 buf->writestring(sd->toChars());
2864 buf->writeByte('(');
2865 argsToCBuffer(buf, elements, hgs);
2866 buf->writeByte(')');
2867 }
2868
2869 void StructLiteralExp::toMangleBuffer(OutBuffer *buf)
2870 {
2871 size_t dim = elements ? elements->dim : 0;
2872 buf->printf("S%u", dim);
2873 for (size_t i = 0; i < dim; i++)
2874 { Expression *e = (Expression *)elements->data[i];
2875 if (e)
2876 e->toMangleBuffer(buf);
2877 else
2878 buf->writeByte('v'); // 'v' for void
2879 }
2880 }
2881
2882 /************************ TypeDotIdExp ************************************/
2883
2884 /* Things like:
2885 * int.size
2886 * foo.size
2887 * (foo).size
2888 * cast(foo).size
2889 */
2890
2891 TypeDotIdExp::TypeDotIdExp(Loc loc, Type *type, Identifier *ident)
2892 : Expression(loc, TOKtypedot, sizeof(TypeDotIdExp))
2893 {
2894 this->type = type;
2895 this->ident = ident;
2896 }
2897
2898 Expression *TypeDotIdExp::syntaxCopy()
2899 {
2900 TypeDotIdExp *te = new TypeDotIdExp(loc, type->syntaxCopy(), ident);
2901 return te;
2902 }
2903
2904 Expression *TypeDotIdExp::semantic(Scope *sc)
2905 { Expression *e;
2906
2907 #if LOGSEMANTIC
2908 printf("TypeDotIdExp::semantic()\n");
2909 #endif
2910 e = new DotIdExp(loc, new TypeExp(loc, type), ident);
2911 e = e->semantic(sc);
2912 return e;
2913 }
2914
2915 void TypeDotIdExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2916 {
2917 buf->writeByte('(');
2918 type->toCBuffer(buf, NULL, hgs);
2919 buf->writeByte(')');
2920 buf->writeByte('.');
2921 buf->writestring(ident->toChars());
2922 }
2923
2924 /************************************************************/
2925
2926 // Mainly just a placeholder
2927
2928 TypeExp::TypeExp(Loc loc, Type *type)
2929 : Expression(loc, TOKtype, sizeof(TypeExp))
2930 {
2931 //printf("TypeExp::TypeExp(%s)\n", type->toChars());
2932 this->type = type;
2933 }
2934
2935 Expression *TypeExp::semantic(Scope *sc)
2936 {
2937 //printf("TypeExp::semantic(%s)\n", type->toChars());
2938 type = type->semantic(loc, sc);
2939 return this;
2940 }
2941
2942 void TypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
2943 {
2944 type->toCBuffer(buf, NULL, hgs);
2945 }
2946
2947 /************************************************************/
2948
2949 // Mainly just a placeholder
2950
2951 ScopeExp::ScopeExp(Loc loc, ScopeDsymbol *pkg)
2952 : Expression(loc, TOKimport, sizeof(ScopeExp))
2953 {
2954 //printf("ScopeExp::ScopeExp(pkg = '%s')\n", pkg->toChars());
2955 //static int count; if (++count == 38) *(char*)0=0;
2956 this->sds = pkg;
2957 }
2958
2959 Expression *ScopeExp::syntaxCopy()
2960 {
2961 ScopeExp *se = new ScopeExp(loc, (ScopeDsymbol *)sds->syntaxCopy(NULL));
2962 return se;
2963 }
2964
2965 Expression *ScopeExp::semantic(Scope *sc)
2966 {
2967 TemplateInstance *ti;
2968 ScopeDsymbol *sds2;
2969
2970 #if LOGSEMANTIC
2971 printf("+ScopeExp::semantic('%s')\n", toChars());
2972 #endif
2973 Lagain:
2974 ti = sds->isTemplateInstance();
2975 if (ti && !global.errors)
2976 { Dsymbol *s;
2977 if (!ti->semanticdone)
2978 ti->semantic(sc);
2979 s = ti->inst->toAlias();
2980 sds2 = s->isScopeDsymbol();
2981 if (!sds2)
2982 { Expression *e;
2983
2984 //printf("s = %s, '%s'\n", s->kind(), s->toChars());
2985 if (ti->withsym)
2986 {
2987 // Same as wthis.s
2988 e = new VarExp(loc, ti->withsym->withstate->wthis);
2989 e = new DotVarExp(loc, e, s->isDeclaration());
2990 }
2991 else
2992 e = new DsymbolExp(loc, s);
2993 e = e->semantic(sc);
2994 //printf("-1ScopeExp::semantic()\n");
2995 return e;
2996 }
2997 if (sds2 != sds)
2998 {
2999 sds = sds2;
3000 goto Lagain;
3001 }
3002 //printf("sds = %s, '%s'\n", sds->kind(), sds->toChars());
3003 }
3004 else
3005 {
3006 //printf("sds = %s, '%s'\n", sds->kind(), sds->toChars());
3007 //printf("\tparent = '%s'\n", sds->parent->toChars());
3008 sds->semantic(sc);
3009 }
3010 type = Type::tvoid;
3011 //printf("-2ScopeExp::semantic() %s\n", toChars());
3012 return this;
3013 }
3014
3015 void ScopeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3016 {
3017 if (sds->isTemplateInstance())
3018 {
3019 sds->toCBuffer(buf, hgs);
3020 }
3021 else
3022 {
3023 buf->writestring(sds->kind());
3024 buf->writestring(" ");
3025 buf->writestring(sds->toChars());
3026 }
3027 }
3028
3029 /********************** TemplateExp **************************************/
3030
3031 // Mainly just a placeholder
3032
3033 TemplateExp::TemplateExp(Loc loc, TemplateDeclaration *td)
3034 : Expression(loc, TOKtemplate, sizeof(TemplateExp))
3035 {
3036 //printf("TemplateExp(): %s\n", td->toChars());
3037 this->td = td;
3038 }
3039
3040 void TemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3041 {
3042 buf->writestring(td->toChars());
3043 }
3044
3045 void TemplateExp::rvalue()
3046 {
3047 error("template %s has no value", toChars());
3048 }
3049
3050 /********************** NewExp **************************************/
3051
3052 NewExp::NewExp(Loc loc, Expression *thisexp, Expressions *newargs,
3053 Type *newtype, Expressions *arguments)
3054 : Expression(loc, TOKnew, sizeof(NewExp))
3055 {
3056 this->thisexp = thisexp;
3057 this->newargs = newargs;
3058 this->newtype = newtype;
3059 this->arguments = arguments;
3060 member = NULL;
3061 allocator = NULL;
3062 onstack = 0;
3063 }
3064
3065 Expression *NewExp::syntaxCopy()
3066 {
3067 return new NewExp(loc,
3068 thisexp ? thisexp->syntaxCopy() : NULL,
3069 arraySyntaxCopy(newargs),
3070 newtype->syntaxCopy(), arraySyntaxCopy(arguments));
3071 }
3072
3073
3074 Expression *NewExp::semantic(Scope *sc)
3075 { int i;
3076 Type *tb;
3077 ClassDeclaration *cdthis = NULL;
3078
3079 #if LOGSEMANTIC
3080 printf("NewExp::semantic() %s\n", toChars());
3081 if (thisexp)
3082 printf("\tthisexp = %s\n", thisexp->toChars());
3083 printf("\tnewtype: %s\n", newtype->toChars());
3084 #endif
3085 if (type) // if semantic() already run
3086 return this;
3087
3088 Lagain:
3089 if (thisexp)
3090 { thisexp = thisexp->semantic(sc);
3091 cdthis = thisexp->type->isClassHandle();
3092 if (cdthis)
3093 {
3094 sc = sc->push(cdthis);
3095 type = newtype->semantic(loc, sc);
3096 sc = sc->pop();
3097 }
3098 else
3099 {
3100 error("'this' for nested class must be a class type, not %s", thisexp->type->toChars());
3101 type = newtype->semantic(loc, sc);
3102 }
3103 }
3104 else
3105 type = newtype->semantic(loc, sc);
3106 newtype = type; // in case type gets cast to something else
3107 tb = type->toBasetype();
3108 //printf("tb: %s, deco = %s\n", tb->toChars(), tb->deco);
3109
3110 arrayExpressionSemantic(newargs, sc);
3111 preFunctionArguments(loc, sc, newargs);
3112 arrayExpressionSemantic(arguments, sc);
3113 preFunctionArguments(loc, sc, arguments);
3114
3115 if (thisexp && tb->ty != Tclass)
3116 error("e.new is only for allocating nested classes, not %s", tb->toChars());
3117
3118 if (tb->ty == Tclass)
3119 { TypeFunction *tf;
3120
3121 TypeClass *tc = (TypeClass *)(tb);
3122 ClassDeclaration *cd = tc->sym->isClassDeclaration();
3123 if (cd->isInterfaceDeclaration())
3124 error("cannot create instance of interface %s", cd->toChars());
3125 else if (cd->isAbstract())
3126 error("cannot create instance of abstract class %s", cd->toChars());
3127 checkDeprecated(sc, cd);
3128 if (cd->isNested())
3129 { /* We need a 'this' pointer for the nested class.
3130 * Ensure we have the right one.
3131 */
3132 Dsymbol *s = cd->toParent2();
3133 ClassDeclaration *cdn = s->isClassDeclaration();
3134
3135 //printf("isNested, cdn = %s\n", cdn ? cdn->toChars() : "null");
3136 if (cdn)
3137 {
3138 if (!cdthis)
3139 {
3140 // Supply an implicit 'this' and try again
3141 thisexp = new ThisExp(loc);
3142 for (Dsymbol *sp = sc->parent; 1; sp = sp->parent)
3143 { if (!sp)
3144 {
3145 error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars());
3146 break;
3147 }
3148 ClassDeclaration *cdp = sp->isClassDeclaration();
3149 if (!cdp)
3150 continue;
3151 if (cdp == cdn || cdn->isBaseOf(cdp, NULL))
3152 break;
3153 // Add a '.outer' and try again
3154 thisexp = new DotIdExp(loc, thisexp, Id::outer);
3155 }
3156 if (!global.errors)
3157 goto Lagain;
3158 }
3159 if (cdthis)
3160 {
3161 //printf("cdthis = %s\n", cdthis->toChars());
3162 if (cdthis != cdn && !cdn->isBaseOf(cdthis, NULL))
3163 error("'this' for nested class must be of type %s, not %s", cdn->toChars(), thisexp->type->toChars());
3164 }
3165 #if 0
3166 else
3167 {
3168 for (Dsymbol *sf = sc->func; 1; sf= sf->toParent2()->isFuncDeclaration())
3169 {
3170 if (!sf)
3171 {
3172 error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars());
3173 break;
3174 }
3175 printf("sf = %s\n", sf->toChars());
3176 AggregateDeclaration *ad = sf->isThis();
3177 if (ad && (ad == cdn || cdn->isBaseOf(ad->isClassDeclaration(), NULL)))
3178 break;
3179 }
3180 }
3181 #endif
3182 }
3183 else if (thisexp)
3184 error("e.new is only for allocating nested classes");
3185 }
3186 else if (thisexp)
3187 error("e.new is only for allocating nested classes");
3188
3189 FuncDeclaration *f = cd->ctor;
3190 if (f)
3191 {
3192 assert(f);
3193 f = f->overloadResolve(loc, arguments);
3194 checkDeprecated(sc, f);
3195 member = f->isCtorDeclaration();
3196 assert(member);
3197
3198 cd->accessCheck(loc, sc, member);
3199
3200 tf = (TypeFunction *)f->type;
3201 type = tf->next;
3202
3203 if (!arguments)
3204 arguments = new Expressions();
3205 functionArguments(loc, sc, tf, arguments);
3206 }
3207 else
3208 {
3209 if (arguments && arguments->dim)
3210 error("no constructor for %s", cd->toChars());
3211 }
3212
3213 if (cd->aggNew)
3214 { Expression *e;
3215
3216 f = cd->aggNew;
3217
3218 // Prepend the uint size argument to newargs[]
3219 e = new IntegerExp(loc, cd->size(loc), Type::tuns32);
3220 if (!newargs)
3221 newargs = new Expressions();
3222 newargs->shift(e);
3223
3224 f = f->overloadResolve(loc, newargs);
3225 allocator = f->isNewDeclaration();
3226 assert(allocator);
3227
3228 tf = (TypeFunction *)f->type;
3229 functionArguments(loc, sc, tf, newargs);
3230 }
3231 else
3232 {
3233 if (newargs && newargs->dim)
3234 error("no allocator for %s", cd->toChars());
3235 }
3236
3237 }
3238 else if (tb->ty == Tstruct)
3239 {
3240 TypeStruct *ts = (TypeStruct *)tb;
3241 StructDeclaration *sd = ts->sym;
3242 FuncDeclaration *f = sd->aggNew;
3243 TypeFunction *tf;
3244
3245 if (arguments && arguments->dim)
3246 error("no constructor for %s", type->toChars());
3247
3248 if (f)
3249 {
3250 Expression *e;
3251
3252 // Prepend the uint size argument to newargs[]
3253 e = new IntegerExp(loc, sd->size(loc), Type::tuns32);
3254 if (!newargs)
3255 newargs = new Expressions();
3256 newargs->shift(e);
3257
3258 f = f->overloadResolve(loc, newargs);
3259 allocator = f->isNewDeclaration();
3260 assert(allocator);
3261
3262 tf = (TypeFunction *)f->type;
3263 functionArguments(loc, sc, tf, newargs);
3264
3265 e = new VarExp(loc, f);
3266 e = new CallExp(loc, e, newargs);
3267 e = e->semantic(sc);
3268 e->type = type->pointerTo();
3269 return e;
3270 }
3271
3272 type = type->pointerTo();
3273 }
3274 else if (tb->ty == Tarray && (arguments && arguments->dim))
3275 {
3276 for (size_t i = 0; i < arguments->dim; i++)
3277 {
3278 if (tb->ty != Tarray)
3279 { error("too many arguments for array");
3280 arguments->dim = i;
3281 break;
3282 }
3283
3284 Expression *arg = (Expression *)arguments->data[i];
3285 arg = resolveProperties(sc, arg);
3286 arg = arg->implicitCastTo(sc, Type::tsize_t);
3287 if (arg->op == TOKint64 && (long long)arg->toInteger() < 0)
3288 error("negative array index %s", arg->toChars());
3289 arguments->data[i] = (void *) arg;
3290 tb = tb->next->toBasetype();
3291 }
3292 }
3293 else if (tb->isscalar())
3294 {
3295 if (arguments && arguments->dim)
3296 error("no constructor for %s", type->toChars());
3297
3298 type = type->pointerTo();
3299 }
3300 else
3301 {
3302 error("new can only create structs, dynamic arrays or class objects, not %s's", type->toChars());
3303 type = type->pointerTo();
3304 }
3305
3306 //printf("NewExp: '%s'\n", toChars());
3307 //printf("NewExp:type '%s'\n", type->toChars());
3308
3309 return this;
3310 }
3311
3312 int NewExp::checkSideEffect(int flag)
3313 {
3314 return 1;
3315 }
3316
3317 void NewExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3318 { int i;
3319
3320 if (thisexp)
3321 { expToCBuffer(buf, hgs, thisexp, PREC_primary);
3322 buf->writeByte('.');
3323 }
3324 buf->writestring("new ");
3325 if (newargs && newargs->dim)
3326 {
3327 buf->writeByte('(');
3328 argsToCBuffer(buf, newargs, hgs);
3329 buf->writeByte(')');
3330 }
3331 newtype->toCBuffer(buf, NULL, hgs);
3332 if (arguments && arguments->dim)
3333 {
3334 buf->writeByte('(');
3335 argsToCBuffer(buf, arguments, hgs);
3336 buf->writeByte(')');
3337 }
3338 }
3339
3340 /********************** NewAnonClassExp **************************************/
3341
3342 NewAnonClassExp::NewAnonClassExp(Loc loc, Expression *thisexp,
3343 Expressions *newargs, ClassDeclaration *cd, Expressions *arguments)
3344 : Expression(loc, TOKnewanonclass, sizeof(NewAnonClassExp))
3345 {
3346 this->thisexp = thisexp;
3347 this->newargs = newargs;
3348 this->cd = cd;
3349 this->arguments = arguments;
3350 }
3351
3352 Expression *NewAnonClassExp::syntaxCopy()
3353 {
3354 return new NewAnonClassExp(loc,
3355 thisexp ? thisexp->syntaxCopy() : NULL,
3356 arraySyntaxCopy(newargs),
3357 (ClassDeclaration *)cd->syntaxCopy(NULL),
3358 arraySyntaxCopy(arguments));
3359 }
3360
3361
3362 Expression *NewAnonClassExp::semantic(Scope *sc)
3363 {
3364 #if LOGSEMANTIC
3365 printf("NewAnonClassExp::semantic() %s\n", toChars());
3366 //printf("type: %s\n", type->toChars());
3367 #endif
3368
3369 Expression *d = new DeclarationExp(loc, cd);
3370 d = d->semantic(sc);
3371
3372 Expression *n = new NewExp(loc, thisexp, newargs, cd->type, arguments);
3373
3374 Expression *c = new CommaExp(loc, d, n);
3375 return c->semantic(sc);
3376 }
3377
3378 int NewAnonClassExp::checkSideEffect(int flag)
3379 {
3380 return 1;
3381 }
3382
3383 void NewAnonClassExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3384 { int i;
3385
3386 if (thisexp)
3387 { expToCBuffer(buf, hgs, thisexp, PREC_primary);
3388 buf->writeByte('.');
3389 }
3390 buf->writestring("new");
3391 if (newargs && newargs->dim)
3392 {
3393 buf->writeByte('(');
3394 argsToCBuffer(buf, newargs, hgs);
3395 buf->writeByte(')');
3396 }
3397 buf->writestring(" class ");
3398 if (arguments && arguments->dim)
3399 {
3400 buf->writeByte('(');
3401 argsToCBuffer(buf, arguments, hgs);
3402 buf->writeByte(')');
3403 }
3404 //buf->writestring(" { }");
3405 if (cd)
3406 {
3407 cd->toCBuffer(buf, hgs);
3408 }
3409 }
3410
3411 /********************** SymOffExp **************************************/
3412
3413 SymOffExp::SymOffExp(Loc loc, Declaration *var, unsigned offset)
3414 : Expression(loc, TOKsymoff, sizeof(SymOffExp))
3415 {
3416 assert(var);
3417 this->var = var;
3418 this->offset = offset;
3419 VarDeclaration *v = var->isVarDeclaration();
3420 if (v && v->needThis())
3421 error("need 'this' for address of %s", v->toChars());
3422 }
3423
3424 Expression *SymOffExp::semantic(Scope *sc)
3425 {
3426 #if LOGSEMANTIC
3427 printf("SymOffExp::semantic('%s')\n", toChars());
3428 #endif
3429 //var->semantic(sc);
3430 if (!type)
3431 type = var->type->pointerTo();
3432 VarDeclaration *v = var->isVarDeclaration();
3433 if (v)
3434 v->checkNestedReference(sc, loc);
3435 return this;
3436 }
3437
3438 int SymOffExp::isBool(int result)
3439 {
3440 return result ? TRUE : FALSE;
3441 }
3442
3443 void SymOffExp::checkEscape()
3444 {
3445 VarDeclaration *v = var->isVarDeclaration();
3446 if (v)
3447 {
3448 if (!v->isDataseg())
3449 error("escaping reference to local variable %s", v->toChars());
3450 }
3451 }
3452
3453 void SymOffExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3454 {
3455 if (offset)
3456 buf->printf("(& %s+%u)", var->toChars(), offset);
3457 else
3458 buf->printf("& %s", var->toChars());
3459 }
3460
3461 /******************************** VarExp **************************/
3462
3463 VarExp::VarExp(Loc loc, Declaration *var)
3464 : Expression(loc, TOKvar, sizeof(VarExp))
3465 {
3466 //printf("VarExp(this = %p, '%s')\n", this, var->toChars());
3467 this->var = var;
3468 this->type = var->type;
3469 }
3470
3471 int VarExp::equals(Object *o)
3472 { VarExp *ne;
3473
3474 if (this == o ||
3475 (((Expression *)o)->op == TOKvar &&
3476 ((ne = (VarExp *)o), type->equals(ne->type)) &&
3477 var == ne->var))
3478 return 1;
3479 return 0;
3480 }
3481
3482 Expression *VarExp::semantic(Scope *sc)
3483 { FuncLiteralDeclaration *fd;
3484
3485 #if LOGSEMANTIC
3486 printf("VarExp::semantic(%s)\n", toChars());
3487 #endif
3488 if (!type)
3489 { type = var->type;
3490 #if 0
3491 if (var->storage_class & STClazy)
3492 {
3493 TypeFunction *tf = new TypeFunction(NULL, type, 0, LINKd);
3494 type = new TypeDelegate(tf);
3495 type = type->semantic(loc, sc);
3496 }
3497 #endif
3498 }
3499
3500 VarDeclaration *v = var->isVarDeclaration();
3501 if (v)
3502 {
3503 if (v->isConst() && type->toBasetype()->ty != Tsarray && v->init)
3504 {
3505 ExpInitializer *ei = v->init->isExpInitializer();
3506 if (ei)
3507 {
3508 //ei->exp->implicitCastTo(sc, type)->print();
3509 return ei->exp->implicitCastTo(sc, type);
3510 }
3511 }
3512 v->checkNestedReference(sc, loc);
3513 }
3514 #if 0
3515 else if ((fd = var->isFuncLiteralDeclaration()) != NULL)
3516 { Expression *e;
3517 e = new FuncExp(loc, fd);
3518 e->type = type;
3519 return e;
3520 }
3521 #endif
3522 return this;
3523 }
3524
3525 char *VarExp::toChars()
3526 {
3527 return var->toChars();
3528 }
3529
3530 void VarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3531 {
3532 buf->writestring(var->toChars());
3533 }
3534
3535 void VarExp::checkEscape()
3536 {
3537 VarDeclaration *v = var->isVarDeclaration();
3538 if (v)
3539 { Type *tb = v->type->toBasetype();
3540 // if reference type
3541 if (tb->ty == Tarray || tb->ty == Tsarray || tb->ty == Tclass)
3542 {
3543 if ((v->isAuto() || v->isScope()) && !v->noauto)
3544 error("escaping reference to auto local %s", v->toChars());
3545 else if (v->storage_class & STCvariadic)
3546 error("escaping reference to variadic parameter %s", v->toChars());
3547 }
3548 }
3549 }
3550
3551 Expression *VarExp::toLvalue(Scope *sc, Expression *e)
3552 {
3553 #if 0
3554 tym = tybasic(e1->ET->Tty);
3555 if (!(tyscalar(tym) ||
3556 tym == TYstruct ||
3557 tym == TYarray && e->Eoper == TOKaddr))
3558 synerr(EM_lvalue); // lvalue expected
3559 #endif
3560 if (var->storage_class & STClazy)
3561 error("lazy variables cannot be lvalues");
3562 return this;
3563 }
3564
3565 Expression *VarExp::modifiableLvalue(Scope *sc, Expression *e)
3566 {
3567 //printf("VarExp::modifiableLvalue('%s')\n", var->toChars());
3568 if (sc->incontract && var->isParameter())
3569 error("cannot modify parameter '%s' in contract", var->toChars());
3570
3571 if (type && type->toBasetype()->ty == Tsarray)
3572 error("cannot change reference to static array '%s'", var->toChars());
3573
3574 VarDeclaration *v = var->isVarDeclaration();
3575 if (v && v->canassign == 0 &&
3576 (var->isConst() || (global.params.Dversion > 1 && var->isFinal())))
3577 error("cannot modify final variable '%s'", var->toChars());
3578
3579 if (var->isCtorinit())
3580 { // It's only modifiable if inside the right constructor
3581 Dsymbol *s = sc->func;
3582 while (1)
3583 {
3584 FuncDeclaration *fd = NULL;
3585 if (s)
3586 fd = s->isFuncDeclaration();
3587 if (fd &&
3588 ((fd->isCtorDeclaration() && var->storage_class & STCfield) ||
3589 (fd->isStaticCtorDeclaration() && !(var->storage_class & STCfield))) &&
3590 fd->toParent() == var->toParent()
3591 )
3592 {
3593 VarDeclaration *v = var->isVarDeclaration();
3594 assert(v);
3595 v->ctorinit = 1;
3596 //printf("setting ctorinit\n");
3597 }
3598 else
3599 {
3600 if (s)
3601 { s = s->toParent2();
3602 continue;
3603 }
3604 else
3605 {
3606 const char *p = var->isStatic() ? "static " : "";
3607 error("can only initialize %sconst %s inside %sconstructor",
3608 p, var->toChars(), p);
3609 }
3610 }
3611 break;
3612 }
3613 }
3614
3615 // See if this expression is a modifiable lvalue (i.e. not const)
3616 return toLvalue(sc, e);
3617 }
3618
3619
3620 /******************************** TupleExp **************************/
3621
3622 TupleExp::TupleExp(Loc loc, Expressions *exps)
3623 : Expression(loc, TOKtuple, sizeof(TupleExp))
3624 {
3625 //printf("TupleExp(this = %p)\n", this);
3626 this->exps = exps;
3627 this->type = NULL;
3628 }
3629
3630
3631 TupleExp::TupleExp(Loc loc, TupleDeclaration *tup)
3632 : Expression(loc, TOKtuple, sizeof(TupleExp))
3633 {
3634 exps = new Expressions();
3635 type = NULL;
3636
3637 exps->reserve(tup->objects->dim);
3638 for (size_t i = 0; i < tup->objects->dim; i++)
3639 { Object *o = (Object *)tup->objects->data[i];
3640 if (o->dyncast() == DYNCAST_EXPRESSION)
3641 {
3642 Expression *e = (Expression *)o;
3643 e = e->syntaxCopy();
3644 exps->push(e);
3645 }
3646 else if (o->dyncast() == DYNCAST_DSYMBOL)
3647 {
3648 Dsymbol *s = (Dsymbol *)o;
3649 Expression *e = new DsymbolExp(loc, s);
3650 exps->push(e);
3651 }
3652 else if (o->dyncast() == DYNCAST_TYPE)
3653 {
3654 Type *t = (Type *)o;
3655 Expression *e = new TypeExp(loc, t);
3656 exps->push(e);
3657 }
3658 else
3659 {
3660 error("%s is not an expression", o->toChars());
3661 }
3662 }
3663 }
3664
3665 int TupleExp::equals(Object *o)
3666 { TupleExp *ne;
3667
3668 if (this == o)
3669 return 1;
3670 if (((Expression *)o)->op == TOKtuple)
3671 {
3672 TupleExp *te = (TupleExp *)o;
3673 if (exps->dim != te->exps->dim)
3674 return 0;
3675 for (size_t i = 0; i < exps->dim; i++)
3676 { Expression *e1 = (Expression *)exps->data[i];
3677 Expression *e2 = (Expression *)te->exps->data[i];
3678
3679 if (!e1->equals(e2))
3680 return 0;
3681 }
3682 return 1;
3683 }
3684 return 0;
3685 }
3686
3687 Expression *TupleExp::syntaxCopy()
3688 {
3689 return new TupleExp(loc, arraySyntaxCopy(exps));
3690 }
3691
3692 Expression *TupleExp::semantic(Scope *sc)
3693 {
3694 #if LOGSEMANTIC
3695 printf("+TupleExp::semantic(%s)\n", toChars());
3696 #endif
3697 if (type)
3698 return this;
3699
3700 // Run semantic() on each argument
3701 for (size_t i = 0; i < exps->dim; i++)
3702 { Expression *e = (Expression *)exps->data[i];
3703
3704 e = e->semantic(sc);
3705 if (!e->type)
3706 { error("%s has no value", e->toChars());
3707 e->type = Type::terror;
3708 }
3709 exps->data[i] = (void *)e;
3710 }
3711
3712 expandTuples(exps);
3713 if (0 && exps->dim == 1)
3714 {
3715 return (Expression *)exps->data[0];
3716 }
3717 type = new TypeTuple(exps);
3718 //printf("-TupleExp::semantic(%s)\n", toChars());
3719 return this;
3720 }
3721
3722 void TupleExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3723 {
3724 buf->writestring("tuple(");
3725 argsToCBuffer(buf, exps, hgs);
3726 buf->writeByte(')');
3727 }
3728
3729 int TupleExp::checkSideEffect(int flag)
3730 { int f = 0;
3731
3732 for (int i = 0; i < exps->dim; i++)
3733 { Expression *e = (Expression *)exps->data[i];
3734
3735 f |= e->checkSideEffect(2);
3736 }
3737 if (flag == 0 && f == 0)
3738 Expression::checkSideEffect(0);
3739 return f;
3740 }
3741
3742 void TupleExp::checkEscape()
3743 {
3744 for (size_t i = 0; i < exps->dim; i++)
3745 { Expression *e = (Expression *)exps->data[i];
3746 e->checkEscape();
3747 }
3748 }
3749
3750 /******************************** FuncExp *********************************/
3751
3752 FuncExp::FuncExp(Loc loc, FuncLiteralDeclaration *fd)
3753 : Expression(loc, TOKfunction, sizeof(FuncExp))
3754 {
3755 this->fd = fd;
3756 }
3757
3758 Expression *FuncExp::syntaxCopy()
3759 {
3760 return new FuncExp(loc, (FuncLiteralDeclaration *)fd->syntaxCopy(NULL));
3761 }
3762
3763 Expression *FuncExp::semantic(Scope *sc)
3764 {
3765 #if LOGSEMANTIC
3766 printf("FuncExp::semantic(%s)\n", toChars());
3767 #endif
3768 if (!type)
3769 {
3770 fd->semantic(sc);
3771 fd->parent = sc->parent;
3772 if (global.errors)
3773 {
3774 if (!fd->type->next)
3775 fd->type->next = Type::terror;
3776 }
3777 else
3778 {
3779 fd->semantic2(sc);
3780 if (!global.errors)
3781 {
3782 fd->semantic3(sc);
3783
3784 if (!global.errors && global.params.useInline)
3785 fd->inlineScan();
3786 }
3787 }
3788
3789 // Type is a "delegate to" or "pointer to" the function literal
3790 if (fd->isNested())
3791 {
3792 type = new TypeDelegate(fd->type);
3793 type = type->semantic(loc, sc);
3794 }
3795 else
3796 {
3797 type = fd->type->pointerTo();
3798 }
3799 }
3800 return this;
3801 }
3802
3803 char *FuncExp::toChars()
3804 {
3805 return fd->toChars();
3806 }
3807
3808 void FuncExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3809 {
3810 buf->writestring(fd->toChars());
3811 }
3812
3813
3814 /******************************** DeclarationExp **************************/
3815
3816 DeclarationExp::DeclarationExp(Loc loc, Dsymbol *declaration)
3817 : Expression(loc, TOKdeclaration, sizeof(DeclarationExp))
3818 {
3819 this->declaration = declaration;
3820 }
3821
3822 Expression *DeclarationExp::syntaxCopy()
3823 {
3824 return new DeclarationExp(loc, declaration->syntaxCopy(NULL));
3825 }
3826
3827 Expression *DeclarationExp::semantic(Scope *sc)
3828 {
3829 if (type)
3830 return this;
3831
3832 #if LOGSEMANTIC
3833 printf("DeclarationExp::semantic() %s\n", toChars());
3834 #endif
3835
3836 /* This is here to support extern(linkage) declaration,
3837 * where the extern(linkage) winds up being an AttribDeclaration
3838 * wrapper.
3839 */
3840 Dsymbol *s = declaration;
3841
3842 AttribDeclaration *ad = declaration->isAttribDeclaration();
3843 if (ad)
3844 {
3845 if (ad->decl && ad->decl->dim == 1)
3846 s = (Dsymbol *)ad->decl->data[0];
3847 }
3848
3849 if (s->isVarDeclaration())
3850 { // Do semantic() on initializer first, so:
3851 // int a = a;
3852 // will be illegal.
3853 declaration->semantic(sc);
3854 s->parent = sc->parent;
3855 }
3856
3857 //printf("inserting '%s' %p into sc = %p\n", s->toChars(), s, sc);
3858 // Insert into both local scope and function scope.
3859 // Must be unique in both.
3860 if (s->ident)
3861 {
3862 if (!sc->insert(s))
3863 error("declaration %s is already defined", s->toPrettyChars());
3864 else if (sc->func)
3865 { VarDeclaration *v = s->isVarDeclaration();
3866 if ((s->isFuncDeclaration() /*|| v && v->storage_class & STCstatic*/) &&
3867 !sc->func->localsymtab->insert(s))
3868 error("declaration %s is already defined in another scope in %s", s->toPrettyChars(), sc->func->toChars());
3869 else if (!global.params.useDeprecated)
3870 { // Disallow shadowing
3871
3872 for (Scope *scx = sc->enclosing; scx && scx->func == sc->func; scx = scx->enclosing)
3873 { Dsymbol *s2;
3874
3875 if (scx->scopesym && scx->scopesym->symtab &&
3876 (s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL &&
3877 s != s2)
3878 {
3879 error("shadowing declaration %s is deprecated", s->toPrettyChars());
3880 }
3881 }
3882 }
3883 }
3884 }
3885 if (!s->isVarDeclaration())
3886 {
3887 declaration->semantic(sc);
3888 s->parent = sc->parent;
3889 }
3890 if (!global.errors)
3891 {
3892 declaration->semantic2(sc);
3893 if (!global.errors)
3894 {
3895 declaration->semantic3(sc);
3896
3897 if (!global.errors && global.params.useInline)
3898 declaration->inlineScan();
3899 }
3900 }
3901
3902 type = Type::tvoid;
3903 return this;
3904 }
3905
3906 int DeclarationExp::checkSideEffect(int flag)
3907 {
3908 return 1;
3909 }
3910
3911 void DeclarationExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3912 {
3913 declaration->toCBuffer(buf, hgs);
3914 }
3915
3916
3917 /************************ TypeidExp ************************************/
3918
3919 /*
3920 * typeid(int)
3921 */
3922
3923 TypeidExp::TypeidExp(Loc loc, Type *typeidType)
3924 : Expression(loc, TOKtypeid, sizeof(TypeidExp))
3925 {
3926 this->typeidType = typeidType;
3927 }
3928
3929
3930 Expression *TypeidExp::syntaxCopy()
3931 {
3932 return new TypeidExp(loc, typeidType->syntaxCopy());
3933 }
3934
3935
3936 Expression *TypeidExp::semantic(Scope *sc)
3937 { Expression *e;
3938
3939 #if LOGSEMANTIC
3940 printf("TypeidExp::semantic()\n");
3941 #endif
3942 typeidType = typeidType->semantic(loc, sc);
3943 e = typeidType->getTypeInfo(sc);
3944 return e;
3945 }
3946
3947 void TypeidExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3948 {
3949 buf->writestring("typeid(");
3950 typeidType->toCBuffer(buf, NULL, hgs);
3951 buf->writeByte(')');
3952 }
3953
3954 /************************************************************/
3955
3956 HaltExp::HaltExp(Loc loc)
3957 : Expression(loc, TOKhalt, sizeof(HaltExp))
3958 {
3959 }
3960
3961 Expression *HaltExp::semantic(Scope *sc)
3962 {
3963 #if LOGSEMANTIC
3964 printf("HaltExp::semantic()\n");
3965 #endif
3966 type = Type::tvoid;
3967 return this;
3968 }
3969
3970 int HaltExp::checkSideEffect(int flag)
3971 {
3972 return 1;
3973 }
3974
3975 void HaltExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
3976 {
3977 buf->writestring("halt");
3978 }
3979
3980 /************************************************************/
3981
3982 IftypeExp::IftypeExp(Loc loc, Type *targ, Identifier *id, enum TOK tok,
3983 Type *tspec, enum TOK tok2)
3984 : Expression(loc, TOKis, sizeof(IftypeExp))
3985 {
3986 this->targ = targ;
3987 this->id = id;
3988 this->tok = tok;
3989 this->tspec = tspec;
3990 this->tok2 = tok2;
3991 }
3992
3993 Expression *IftypeExp::syntaxCopy()
3994 {
3995 return new IftypeExp(loc,
3996 targ->syntaxCopy(),
3997 id,
3998 tok,
3999 tspec ? tspec->syntaxCopy() : NULL,
4000 tok2);
4001 }
4002
4003 Expression *IftypeExp::semantic(Scope *sc)
4004 { Type *tded;
4005
4006 //printf("IftypeExp::semantic()\n");
4007 if (id && !(sc->flags & SCOPEstaticif))
4008 error("can only declare type aliases within static if conditionals");
4009
4010 unsigned errors_save = global.errors;
4011 global.errors = 0;
4012 global.gag++; // suppress printing of error messages
4013 targ = targ->semantic(loc, sc);
4014 global.gag--;
4015 unsigned gerrors = global.errors;
4016 global.errors = errors_save;
4017
4018 if (gerrors) // if any errors happened
4019 { // then condition is false
4020 goto Lno;
4021 }
4022 else if (tok2 != TOKreserved)
4023 {
4024 switch (tok2)
4025 {
4026 case TOKtypedef:
4027 if (targ->ty != Ttypedef)
4028 goto Lno;
4029 tded = ((TypeTypedef *)targ)->sym->basetype;
4030 break;
4031
4032 case TOKstruct:
4033 if (targ->ty != Tstruct)
4034 goto Lno;
4035 if (((TypeStruct *)targ)->sym->isUnionDeclaration())
4036 goto Lno;
4037 tded = targ;
4038 break;
4039
4040 case TOKunion:
4041 if (targ->ty != Tstruct)
4042 goto Lno;
4043 if (!((TypeStruct *)targ)->sym->isUnionDeclaration())
4044 goto Lno;
4045 tded = targ;
4046 break;
4047
4048 case TOKclass:
4049 if (targ->ty != Tclass)
4050 goto Lno;
4051 if (((TypeClass *)targ)->sym->isInterfaceDeclaration())
4052 goto Lno;
4053 tded = targ;
4054 break;
4055
4056 case TOKinterface:
4057 if (targ->ty != Tclass)
4058 goto Lno;
4059 if (!((TypeClass *)targ)->sym->isInterfaceDeclaration())
4060 goto Lno;
4061 tded = targ;
4062 break;
4063
4064 case TOKsuper:
4065 // If class or interface, get the base class and interfaces
4066 if (targ->ty != Tclass)
4067 goto Lno;
4068 else
4069 { ClassDeclaration *cd = ((TypeClass *)targ)->sym;
4070 Arguments *args = new Arguments;
4071 args->reserve(cd->baseclasses.dim);
4072 for (size_t i = 0; i < cd->baseclasses.dim; i++)
4073 { BaseClass *b = (BaseClass *)cd->baseclasses.data[i];
4074 args->push(new Argument(STCin, b->type, NULL, NULL));
4075 }
4076 tded = new TypeTuple(args);
4077 }
4078 break;
4079
4080 case TOKenum:
4081 if (targ->ty != Tenum)
4082 goto Lno;
4083 tded = ((TypeEnum *)targ)->sym->memtype;
4084 break;
4085
4086 case TOKdelegate:
4087 if (targ->ty != Tdelegate)
4088 goto Lno;
4089 tded = targ->next; // the underlying function type
4090 break;
4091
4092 case TOKfunction:
4093 { if (targ->ty != Tfunction)
4094 goto Lno;
4095 tded = targ;
4096
4097 /* Generate tuple from function parameter types.
4098 */
4099 assert(tded->ty == Tfunction);
4100 Arguments *params = ((TypeFunction *)tded)->parameters;
4101 size_t dim = Argument::dim(params);
4102 Arguments *args = new Arguments;
4103 args->reserve(dim);
4104 for (size_t i = 0; i < dim; i++)
4105 { Argument *arg = Argument::getNth(params, i);
4106 assert(arg && arg->type);
4107 args->push(new Argument(arg->storageClass, arg->type, NULL, NULL));
4108 }
4109 tded = new TypeTuple(args);
4110 break;
4111 }
4112 case TOKreturn:
4113 /* Get the 'return type' for the function,
4114 * delegate, or pointer to function.
4115 */
4116 if (targ->ty == Tfunction)
4117 tded = targ->next;
4118 else if (targ->ty == Tdelegate)
4119 tded = targ->next->next;
4120 else if (targ->ty == Tpointer && targ->next->ty == Tfunction)
4121 tded = targ->next->next;
4122 else
4123 goto Lno;
4124 break;
4125
4126 default:
4127 assert(0);
4128 }
4129 goto Lyes;
4130 }
4131 else if (id && tspec)
4132 {
4133 /* Evaluate to TRUE if targ matches tspec.
4134 * If TRUE, declare id as an alias for the specialized type.
4135 */
4136
4137 MATCH m;
4138 TemplateTypeParameter tp(loc, id, NULL, NULL);
4139
4140 TemplateParameters parameters;
4141 parameters.setDim(1);
4142 parameters.data[0] = (void *)&tp;
4143
4144 Objects dedtypes;
4145 dedtypes.setDim(1);
4146 dedtypes.data[0] = NULL;
4147
4148 m = targ->deduceType(NULL, tspec, &parameters, &dedtypes);
4149 if (m == MATCHnomatch ||
4150 (m != MATCHexact && tok == TOKequal))
4151 goto Lno;
4152 else
4153 {
4154 assert(dedtypes.dim == 1);
4155 tded = (Type *)dedtypes.data[0];
4156 if (!tded)
4157 tded = targ;
4158 goto Lyes;
4159 }
4160 }
4161 else if (id)
4162 {
4163 /* Declare id as an alias for type targ. Evaluate to TRUE
4164 */
4165 tded = targ;
4166 goto Lyes;
4167 }
4168 else if (tspec)
4169 {
4170 /* Evaluate to TRUE if targ matches tspec
4171 */
4172 tspec = tspec->semantic(loc, sc);
4173 //printf("targ = %s\n", targ->toChars());
4174 //printf("tspec = %s\n", tspec->toChars());
4175 if (tok == TOKcolon)
4176 { if (targ->implicitConvTo(tspec))
4177 goto Lyes;
4178 else
4179 goto Lno;
4180 }
4181 else /* == */
4182 { if (targ->equals(tspec))
4183 goto Lyes;
4184 else
4185 goto Lno;
4186 }
4187 }
4188
4189 Lyes:
4190 if (id)
4191 {
4192 Dsymbol *s = new AliasDeclaration(loc, id, tded);
4193 s->semantic(sc);
4194 sc->insert(s);
4195 if (sc->sd)
4196 s->addMember(sc, sc->sd, 1);
4197 }
4198 return new IntegerExp(1);
4199
4200 Lno:
4201 return new IntegerExp(0);
4202 }
4203
4204 void IftypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4205 {
4206 buf->writestring("is(");
4207 targ->toCBuffer(buf, id, hgs);
4208 if (tspec)
4209 {
4210 if (tok == TOKcolon)
4211 buf->writestring(" : ");
4212 else
4213 buf->writestring(" == ");
4214 tspec->toCBuffer(buf, NULL, hgs);
4215 }
4216 buf->writeByte(')');
4217 }
4218
4219
4220 /************************************************************/
4221
4222 UnaExp::UnaExp(Loc loc, enum TOK op, int size, Expression *e1)
4223 : Expression(loc, op, size)
4224 {
4225 this->e1 = e1;
4226 }
4227
4228 Expression *UnaExp::syntaxCopy()
4229 { UnaExp *e;
4230
4231 e = (UnaExp *)copy();
4232 e->type = NULL;
4233 e->e1 = e->e1->syntaxCopy();
4234 return e;
4235 }
4236
4237 Expression *UnaExp::semantic(Scope *sc)
4238 {
4239 #if LOGSEMANTIC
4240 printf("UnaExp::semantic('%s')\n", toChars());
4241 #endif
4242 e1 = e1->semantic(sc);
4243 // if (!e1->type)
4244 // error("%s has no value", e1->toChars());
4245 return this;
4246 }
4247
4248 void UnaExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4249 {
4250 buf->writestring(Token::toChars(op));
4251 expToCBuffer(buf, hgs, e1, precedence[op]);
4252 }
4253
4254 /************************************************************/
4255
4256 BinExp::BinExp(Loc loc, enum TOK op, int size, Expression *e1, Expression *e2)
4257 : Expression(loc, op, size)
4258 {
4259 this->e1 = e1;
4260 this->e2 = e2;
4261 }
4262
4263 Expression *BinExp::syntaxCopy()
4264 { BinExp *e;
4265
4266 e = (BinExp *)copy();
4267 e->type = NULL;
4268 e->e1 = e->e1->syntaxCopy();
4269 e->e2 = e->e2->syntaxCopy();
4270 return e;
4271 }
4272
4273 Expression *BinExp::semantic(Scope *sc)
4274 {
4275 #if LOGSEMANTIC
4276 printf("BinExp::semantic('%s')\n", toChars());
4277 #endif
4278 e1 = e1->semantic(sc);
4279 if (!e1->type)
4280 {
4281 error("%s has no value", e1->toChars());
4282 e1->type = Type::terror;
4283 }
4284 e2 = e2->semantic(sc);
4285 if (!e2->type)
4286 {
4287 error("%s has no value", e2->toChars());
4288 e2->type = Type::terror;
4289 }
4290 assert(e1->type);
4291 return this;
4292 }
4293
4294 Expression *BinExp::semanticp(Scope *sc)
4295 {
4296 BinExp::semantic(sc);
4297 e1 = resolveProperties(sc, e1);
4298 e2 = resolveProperties(sc, e2);
4299 return this;
4300 }
4301
4302 /***************************
4303 * Common semantic routine for some xxxAssignExp's.
4304 */
4305
4306 Expression *BinExp::commonSemanticAssign(Scope *sc)
4307 { Expression *e;
4308
4309 if (!type)
4310 {
4311 BinExp::semantic(sc);
4312 e2 = resolveProperties(sc, e2);
4313
4314 e = op_overload(sc);
4315 if (e)
4316 return e;
4317
4318 e1 = e1->modifiableLvalue(sc, NULL);
4319 e1->checkScalar();
4320 type = e1->type;
4321 if (type->toBasetype()->ty == Tbool)
4322 {
4323 error("operator not allowed on bool expression %s", toChars());
4324 }
4325 typeCombine(sc);
4326 e1->checkArithmetic();
4327 e2->checkArithmetic();
4328
4329 if (op == TOKmodass && e2->type->iscomplex())
4330 { error("cannot perform modulo complex arithmetic");
4331 return new IntegerExp(0);
4332 }
4333 }
4334 return this;
4335 }
4336
4337 Expression *BinExp::commonSemanticAssignIntegral(Scope *sc)
4338 { Expression *e;
4339
4340 if (!type)
4341 {
4342 BinExp::semantic(sc);
4343 e2 = resolveProperties(sc, e2);
4344
4345 e = op_overload(sc);
4346 if (e)
4347 return e;
4348
4349 e1 = e1->modifiableLvalue(sc, NULL);
4350 e1->checkScalar();
4351 type = e1->type;
4352 if (type->toBasetype()->ty == Tbool)
4353 {
4354 e2 = e2->implicitCastTo(sc, type);
4355 }
4356
4357 typeCombine(sc);
4358 e1->checkIntegral();
4359 e2->checkIntegral();
4360 }
4361 return this;
4362 }
4363
4364 int BinExp::checkSideEffect(int flag)
4365 {
4366 if (op == TOKplusplus ||
4367 op == TOKminusminus ||
4368 op == TOKassign ||
4369 op == TOKaddass ||
4370 op == TOKminass ||
4371 op == TOKcatass ||
4372 op == TOKmulass ||
4373 op == TOKdivass ||
4374 op == TOKmodass ||
4375 op == TOKshlass ||
4376 op == TOKshrass ||
4377 op == TOKushrass ||
4378 op == TOKandass ||
4379 op == TOKorass ||
4380 op == TOKxorass ||
4381 op == TOKin ||
4382 op == TOKremove)
4383 return 1;
4384 return Expression::checkSideEffect(flag);
4385 }
4386
4387 void BinExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4388 {
4389 expToCBuffer(buf, hgs, e1, precedence[op]);
4390 buf->writeByte(' ');
4391 buf->writestring(Token::toChars(op));
4392 buf->writeByte(' ');
4393 expToCBuffer(buf, hgs, e2, (enum PREC)(precedence[op] + 1));
4394 }
4395
4396 int BinExp::isunsigned()
4397 {
4398 return e1->type->isunsigned() || e2->type->isunsigned();
4399 }
4400
4401 void BinExp::incompatibleTypes()
4402 {
4403 error("incompatible types for ((%s) %s (%s)): '%s' and '%s'",
4404 e1->toChars(), Token::toChars(op), e2->toChars(),
4405 e1->type->toChars(), e2->type->toChars());
4406 }
4407
4408 /************************************************************/
4409
4410 CompileExp::CompileExp(Loc loc, Expression *e)
4411 : UnaExp(loc, TOKmixin, sizeof(CompileExp), e)
4412 {
4413 }
4414
4415 Expression *CompileExp::semantic(Scope *sc)
4416 {
4417 #if LOGSEMANTIC
4418 printf("CompileExp::semantic('%s')\n", toChars());
4419 #endif
4420 UnaExp::semantic(sc);
4421 e1 = resolveProperties(sc, e1);
4422 e1 = e1->optimize(WANTvalue | WANTinterpret);
4423 if (e1->op != TOKstring)
4424 { error("argument to mixin must be a string, not (%s)", e1->toChars());
4425 type = Type::terror;
4426 return this;
4427 }
4428 StringExp *se = (StringExp *)e1;
4429 se = se->toUTF8(sc);
4430 Parser p(sc->module, (unsigned char *)se->string, se->len, 0);
4431 p.loc = loc;
4432 p.nextToken();
4433 Expression *e = p.parseExpression();
4434 if (p.token.value != TOKeof)
4435 error("incomplete mixin expression (%s)", se->toChars());
4436 return e->semantic(sc);
4437 }
4438
4439 void CompileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4440 {
4441 buf->writestring("mixin(");
4442 expToCBuffer(buf, hgs, e1, PREC_assign);
4443 buf->writeByte(')');
4444 }
4445
4446 /************************************************************/
4447
4448 FileExp::FileExp(Loc loc, Expression *e)
4449 : UnaExp(loc, TOKmixin, sizeof(FileExp), e)
4450 {
4451 }
4452
4453 Expression *FileExp::semantic(Scope *sc)
4454 { char *name;
4455 StringExp *se;
4456
4457 #if LOGSEMANTIC
4458 printf("FileExp::semantic('%s')\n", toChars());
4459 #endif
4460 UnaExp::semantic(sc);
4461 e1 = resolveProperties(sc, e1);
4462 e1 = e1->optimize(WANTvalue);
4463 if (e1->op != TOKstring)
4464 { error("file name argument must be a string, not (%s)", e1->toChars());
4465 goto Lerror;
4466 }
4467 se = (StringExp *)e1;
4468 se = se->toUTF8(sc);
4469 name = (char *)se->string;
4470
4471 if (!global.params.fileImppath)
4472 { error("need -Jpath switch to import text file %s", name);
4473 goto Lerror;
4474 }
4475
4476 if (name != FileName::name(name))
4477 { error("use -Jpath switch to provide path for filename %s", name);
4478 goto Lerror;
4479 }
4480
4481 name = FileName::searchPath(global.filePath, name, 0);
4482 if (!name)
4483 { error("file %s cannot be found, check -Jpath", se->toChars());
4484 goto Lerror;
4485 }
4486
4487 if (global.params.verbose)
4488 printf("file %s\t(%s)\n", se->string, name);
4489
4490 { File f(name);
4491 if (f.read())
4492 { error("cannot read file %s", f.toChars());
4493 goto Lerror;
4494 }
4495 else
4496 {
4497 f.ref = 1;
4498 se = new StringExp(loc, f.buffer, f.len);
4499 }
4500 }
4501 Lret:
4502 return se->semantic(sc);
4503
4504 Lerror:
4505 se = new StringExp(loc, "");
4506 goto Lret;
4507 }
4508
4509 void FileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4510 {
4511 buf->writestring("import(");
4512 expToCBuffer(buf, hgs, e1, PREC_assign);
4513 buf->writeByte(')');
4514 }
4515
4516 /************************************************************/
4517
4518 AssertExp::AssertExp(Loc loc, Expression *e, Expression *msg)
4519 : UnaExp(loc, TOKassert, sizeof(AssertExp), e)
4520 {
4521 this->msg = msg;
4522 }
4523
4524 Expression *AssertExp::syntaxCopy()
4525 {
4526 AssertExp *ae = new AssertExp(loc, e1->syntaxCopy(),
4527 msg ? msg->syntaxCopy() : NULL);
4528 return ae;
4529 }
4530
4531 Expression *AssertExp::semantic(Scope *sc)
4532 {
4533 #if LOGSEMANTIC
4534 printf("AssertExp::semantic('%s')\n", toChars());
4535 #endif
4536 UnaExp::semantic(sc);
4537 e1 = resolveProperties(sc, e1);
4538 // BUG: see if we can do compile time elimination of the Assert
4539 e1 = e1->optimize(WANTvalue);
4540 e1 = e1->checkToBoolean();
4541 if (msg)
4542 {
4543 msg = msg->semantic(sc);
4544 msg = resolveProperties(sc, msg);
4545 msg = msg->implicitCastTo(sc, Type::tchar->arrayOf());
4546 msg = msg->optimize(WANTvalue);
4547 }
4548 if (e1->isBool(FALSE))
4549 {
4550 FuncDeclaration *fd = sc->parent->isFuncDeclaration();
4551 fd->hasReturnExp |= 4;
4552
4553 if (!global.params.useAssert)
4554 { Expression *e = new HaltExp(loc);
4555 e = e->semantic(sc);
4556 return e;
4557 }
4558 }
4559 type = Type::tvoid;
4560 return this;
4561 }
4562
4563 int AssertExp::checkSideEffect(int flag)
4564 {
4565 return 1;
4566 }
4567
4568 void AssertExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4569 {
4570 buf->writestring("assert(");
4571 expToCBuffer(buf, hgs, e1, PREC_assign);
4572 if (msg)
4573 {
4574 buf->writeByte(',');
4575 expToCBuffer(buf, hgs, msg, PREC_assign);
4576 }
4577 buf->writeByte(')');
4578 }
4579
4580 /************************************************************/
4581
4582 DotIdExp::DotIdExp(Loc loc, Expression *e, Identifier *ident)
4583 : UnaExp(loc, TOKdot, sizeof(DotIdExp), e)
4584 {
4585 this->ident = ident;
4586 }
4587
4588 Expression *DotIdExp::semantic(Scope *sc)
4589 { Expression *e;
4590 Expression *eleft;
4591 Expression *eright;
4592
4593 #if LOGSEMANTIC
4594 printf("DotIdExp::semantic(this = %p, '%s')\n", this, toChars());
4595 //printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op));
4596 #endif
4597
4598 //{ static int z; fflush(stdout); if (++z == 10) *(char*)0=0; }
4599
4600 #if 0
4601 /* Don't do semantic analysis if we'll be converting
4602 * it to a string.
4603 */
4604 if (ident == Id::stringof)
4605 { char *s = e1->toChars();
4606 e = new StringExp(loc, s, strlen(s), 'c');
4607 e = e->semantic(sc);
4608 return e;
4609 }
4610 #endif
4611
4612 /* Special case: rewrite this.id and super.id
4613 * to be classtype.id and baseclasstype.id
4614 * if we have no this pointer.
4615 */
4616 if ((e1->op == TOKthis || e1->op == TOKsuper) && !hasThis(sc))
4617 { ClassDeclaration *cd;
4618 StructDeclaration *sd;
4619 AggregateDeclaration *ad;
4620
4621 ad = sc->getStructClassScope();
4622 if (ad)
4623 {
4624 cd = ad->isClassDeclaration();
4625 if (cd)
4626 {
4627 if (e1->op == TOKthis)
4628 {
4629 e = new TypeDotIdExp(loc, cd->type, ident);
4630 return e->semantic(sc);
4631 }
4632 else if (cd->baseClass && e1->op == TOKsuper)
4633 {
4634 e = new TypeDotIdExp(loc, cd->baseClass->type, ident);
4635 return e->semantic(sc);
4636 }
4637 }
4638 else
4639 {
4640 sd = ad->isStructDeclaration();
4641 if (sd)
4642 {
4643 if (e1->op == TOKthis)
4644 {
4645 e = new TypeDotIdExp(loc, sd->type, ident);
4646 return e->semantic(sc);
4647 }
4648 }
4649 }
4650 }
4651 }
4652
4653 UnaExp::semantic(sc);
4654
4655 if (e1->op == TOKdotexp)
4656 {
4657 DotExp *de = (DotExp *)e1;
4658 eleft = de->e1;
4659 eright = de->e2;
4660 }
4661 else
4662 {
4663 e1 = resolveProperties(sc, e1);
4664 eleft = NULL;
4665 eright = e1;
4666 }
4667
4668 if (e1->op == TOKtuple && ident == Id::length)
4669 {
4670 TupleExp *te = (TupleExp *)e1;
4671 e = new IntegerExp(loc, te->exps->dim, Type::tsize_t);
4672 return e;
4673 }
4674
4675 if (eright->op == TOKimport) // also used for template alias's
4676 {
4677 Dsymbol *s;
4678 ScopeExp *ie = (ScopeExp *)eright;
4679
4680 s = ie->sds->search(loc, ident, 0);
4681 if (s)
4682 {
4683 s = s->toAlias();
4684 checkDeprecated(sc, s);
4685
4686 EnumMember *em = s->isEnumMember();
4687 if (em)
4688 {
4689 e = em->value;
4690 e = e->semantic(sc);
4691 return e;
4692 }
4693
4694 VarDeclaration *v = s->isVarDeclaration();
4695 if (v)
4696 {
4697 //printf("DotIdExp:: Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars());
4698 if (v->inuse)
4699 {
4700 error("circular reference to '%s'", v->toChars());
4701 type = Type::tint32;
4702 return this;
4703 }
4704 type = v->type;
4705 if (v->isConst())
4706 {
4707 if (v->init)
4708 {
4709 ExpInitializer *ei = v->init->isExpInitializer();
4710 if (ei)
4711 {
4712 //printf("\tei: %p (%s)\n", ei->exp, ei->exp->toChars());
4713 //ei->exp = ei->exp->semantic(sc);
4714 if (ei->exp->type == type)
4715 {
4716 e = ei->exp->copy(); // make copy so we can change loc
4717 e->loc = loc;
4718 return e;
4719 }
4720 }
4721 }
4722 else if (type->isscalar())
4723 {
4724 e = type->defaultInit();
4725 e->loc = loc;
4726 return e;
4727 }
4728 }
4729 if (v->needThis())
4730 {
4731 if (!eleft)
4732 eleft = new ThisExp(loc);
4733 e = new DotVarExp(loc, eleft, v);
4734 e = e->semantic(sc);
4735 }
4736 else
4737 {
4738 e = new VarExp(loc, v);
4739 if (eleft)
4740 { e = new CommaExp(loc, eleft, e);
4741 e->type = v->type;
4742 }
4743 }
4744 return e->deref();
4745 }
4746
4747 FuncDeclaration *f = s->isFuncDeclaration();
4748 if (f)
4749 {
4750 //printf("it's a function\n");
4751 if (f->needThis())
4752 {
4753 if (!eleft)
4754 eleft = new ThisExp(loc);
4755 e = new DotVarExp(loc, eleft, f);
4756 e = e->semantic(sc);
4757 }
4758 else
4759 {
4760 e = new VarExp(loc, f);
4761 if (eleft)
4762 { e = new CommaExp(loc, eleft, e);
4763 e->type = f->type;
4764 }
4765 }
4766 return e;
4767 }
4768
4769 Type *t = s->getType();
4770 if (t)
4771 {
4772 return new TypeExp(loc, t);
4773 }
4774
4775 ScopeDsymbol *sds = s->isScopeDsymbol();
4776 if (sds)
4777 {
4778 //printf("it's a ScopeDsymbol\n");
4779 e = new ScopeExp(loc, sds);
4780 e = e->semantic(sc);
4781 if (eleft)
4782 e = new DotExp(loc, eleft, e);
4783 return e;
4784 }
4785
4786 Import *imp = s->isImport();
4787 if (imp)
4788 {
4789 ScopeExp *ie;
4790
4791 ie = new ScopeExp(loc, imp->pkg);
4792 return ie->semantic(sc);
4793 }
4794
4795 // BUG: handle other cases like in IdentifierExp::semantic()
4796 #ifdef DEBUG
4797 printf("s = '%s', kind = '%s'\n", s->toChars(), s->kind());
4798 #endif
4799 assert(0);
4800 }
4801 else if (ident == Id::stringof)
4802 { char *s = ie->toChars();
4803 e = new StringExp(loc, s, strlen(s), 'c');
4804 e = e->semantic(sc);
4805 return e;
4806 }
4807 error("undefined identifier %s", toChars());
4808 type = Type::tvoid;
4809 return this;
4810 }
4811 else if (e1->type->ty == Tpointer &&
4812 ident != Id::init && ident != Id::__sizeof &&
4813 ident != Id::alignof && ident != Id::offsetof &&
4814 ident != Id::mangleof && ident != Id::stringof)
4815 {
4816 e = new PtrExp(loc, e1);
4817 e->type = e1->type->next;
4818 return e->type->dotExp(sc, e, ident);
4819 }
4820 else
4821 {
4822 e = e1->type->dotExp(sc, e1, ident);
4823 e = e->semantic(sc);
4824 return e;
4825 }
4826 }
4827
4828 void DotIdExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4829 {
4830 //printf("DotIdExp::toCBuffer()\n");
4831 expToCBuffer(buf, hgs, e1, PREC_primary);
4832 buf->writeByte('.');
4833 buf->writestring(ident->toChars());
4834 }
4835
4836 /********************** DotTemplateExp ***********************************/
4837
4838 // Mainly just a placeholder
4839
4840 DotTemplateExp::DotTemplateExp(Loc loc, Expression *e, TemplateDeclaration *td)
4841 : UnaExp(loc, TOKdottd, sizeof(DotTemplateExp), e)
4842
4843 {
4844 this->td = td;
4845 }
4846
4847 void DotTemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
4848 {
4849 expToCBuffer(buf, hgs, e1, PREC_primary);
4850 buf->writeByte('.');
4851 buf->writestring(td->toChars());
4852 }
4853
4854
4855 /************************************************************/
4856
4857 DotVarExp::DotVarExp(Loc loc, Expression *e, Declaration *v)
4858 : UnaExp(loc, TOKdotvar, sizeof(DotVarExp), e)
4859 {
4860 //printf("DotVarExp()\n");
4861 this->var = v;
4862 }
4863
4864 Expression *DotVarExp::semantic(Scope *sc)
4865 {
4866 #if LOGSEMANTIC
4867 printf("DotVarExp::semantic('%s')\n", toChars());
4868 #endif
4869 if (!type)
4870 {
4871 var = var->toAlias()->isDeclaration();
4872
4873 TupleDeclaration *tup = var->isTupleDeclaration();
4874 if (tup)
4875 { /* Replace:
4876 * e1.tuple(a, b, c)
4877 * with:
4878 * tuple(e1.a, e1.b, e1.c)
4879 */
4880 Expressions *exps = new Expressions;
4881
4882 exps->reserve(tup->objects->dim);
4883 for (size_t i = 0; i < tup->objects->dim; i++)
4884 { Object *o = (Object *)tup->objects->data[i];
4885 if (o->dyncast() != DYNCAST_EXPRESSION)
4886 {
4887 error("%s is not an expression", o->toChars());
4888 }
4889 else
4890 {
4891 Expression *e = (Expression *)o;
4892 if (e->op != TOKdsymbol)
4893 error("%s is not a member", e->toChars());
4894 else
4895 { DsymbolExp *ve = (DsymbolExp *)e;
4896
4897 e = new DotVarExp(loc, e1, ve->s->isDeclaration());
4898 exps->push(e);
4899 }
4900 }
4901 }
4902 Expression *e = new TupleExp(loc, exps);
4903 e = e->semantic(sc);
4904 return e;
4905 }
4906
4907 e1 = e1->semantic(sc);
4908 type = var->type;
4909 if (!type && global.errors)
4910 { // var is goofed up, just return 0
4911 return new IntegerExp(0);
4912 }
4913 assert(type);
4914
4915 if (!var->isFuncDeclaration()) // for functions, do checks after overload resolution
4916 {
4917 AggregateDeclaration *ad = var->toParent()->isAggregateDeclaration();
4918 L1:
4919 Type *t = e1->type;
4920
4921 if (ad &&
4922 !(t->ty == Tpointer && t->next->ty == Tstruct &&
4923 ((TypeStruct *)t->next)->sym == ad)
4924 &&
4925 !(t->ty == Tstruct &&
4926 ((TypeStruct *)t)->sym == ad)
4927 )
4928 {
4929 ClassDeclaration *cd = ad->isClassDeclaration();
4930 ClassDeclaration *tcd = t->isClassHandle();
4931
4932 if (!cd || !tcd ||
4933 !(tcd == cd || cd->isBaseOf(tcd, NULL))
4934 )
4935 {
4936 if (tcd && tcd->isNested())
4937 { // Try again with outer scope
4938
4939 e1 = new DotVarExp(loc, e1, tcd->vthis);
4940 e1 = e1->semantic(sc);
4941
4942 // Skip over nested functions, and get the enclosing
4943 // class type.
4944 Dsymbol *s = tcd->toParent();
4945 while (s && s->isFuncDeclaration())
4946 { FuncDeclaration *f = s->isFuncDeclaration();
4947 if (f->vthis)
4948 {
4949 e1 = new VarExp(loc, f->vthis);
4950 }
4951 s = s->toParent();
4952 }
4953 if (s && s->isClassDeclaration())
4954 e1->type = s->isClassDeclaration()->type;
4955
4956 goto L1;
4957 }
4958 #ifdef DEBUG
4959 printf("2: ");
4960 #endif
4961 error("this for %s needs to be type %s not type %s",
4962 var->toChars(), ad->toChars(), t->toChars());
4963 }
4964 }
4965 accessCheck(loc, sc, e1, var);
4966 }
4967 }
4968 //printf("-DotVarExp::semantic('%s')\n", toChars());
4969 return this;
4970 }
4971
4972 Expression *DotVarExp::toLvalue(Scope *sc, Expression *e)
4973 {
4974 //printf("DotVarExp::toLvalue(%s)\n", toChars());
4975 return this;
4976 }
4977
4978 Expression *DotVarExp::modifiableLvalue(Scope *sc, Expression *e)
4979 {
4980 //printf("DotVarExp::modifiableLvalue(%s)\n", toChars());
4981
4982 if (var->isCtorinit())
4983 { // It's only modifiable if inside the right constructor
4984 Dsymbol *s = sc->func;
4985 while (1)
4986 {
4987 FuncDeclaration *fd = NULL;
4988 if (s)
4989 fd = s->isFuncDeclaration();
4990 if (fd &&
4991 ((fd->isCtorDeclaration() && var->storage_class & STCfield) ||
4992 (fd->isStaticCtorDeclaration() && !(var->storage_class & STCfield))) &&
4993 fd->toParent() == var->toParent() &&
4994 e1->op == TOKthis
4995 )
4996 {
4997 VarDeclaration *v = var->isVarDeclaration();
4998 assert(v);
4999 v->ctorinit = 1;
5000 //printf("setting ctorinit\n");
5001 }
5002 else
5003 {
5004 if (s)
5005 { s = s->toParent2();
5006 continue;
5007 }
5008 else
5009 {
5010 const char *p = var->isStatic() ? "static " : "";
5011 error("can only initialize %sconst member %s inside %sconstructor",
5012 p, var->toChars(), p);
5013 }
5014 }
5015 break;
5016 }
5017 }
5018 return this;
5019 }
5020
5021 void DotVarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
5022 {
5023 expToCBuffer(buf, hgs, e1, PREC_primary);
5024 buf->writeByte('.');
5025 buf->writestring(var->toChars());
5026 }
5027
5028 /************************************************************/
5029
5030 /* Things like:
5031 * foo.bar!(args)
5032 */
5033
5034 DotTemplateInstanceExp::DotTemplateInstanceExp(Loc loc, Expression *e, TemplateInstance *ti)
5035 : UnaExp(loc, TOKdotti, sizeof(DotTemplateInstanceExp), e)
5036 {
5037 //printf("DotTemplateInstanceExp()\n");
5038 this->ti = ti;
5039 }
5040
5041 Expression *DotTemplateInstanceExp::syntaxCopy()
5042 {
5043 DotTemplateInstanceExp *de = new DotTemplateInstanceExp(loc,
5044 e1->syntaxCopy(),
5045 (TemplateInstance *)ti->syntaxCopy(NULL));
5046 return de;
5047 }
5048
5049 Expression *DotTemplateInstanceExp::semantic(Scope *sc)
5050 { Dsymbol *s;
5051 Dsymbol *s2;
5052 TemplateDeclaration *td;
5053 Expression *e;
5054 Identifier *id;
5055 Type *t1;
5056 Expression *eleft = NULL;
5057 Expression *eright;
5058
5059 #if LOGSEMANTIC
5060 printf("DotTemplateInstanceExp::semantic('%s')\n", toChars());
5061 #endif
5062 //e1->print();
5063 //print();
5064 e1 = e1->semantic(sc);
5065 t1 = e1->type;
5066 if (t1)
5067 t1 = t1->toBasetype();
5068 //t1->print();
5069 if (e1->op == TOKdotexp)
5070 { DotExp *de = (DotExp *)e1;
5071 eleft = de->e1;
5072 eright = de->e2;
5073 }
5074 else
5075 { eleft = NULL;
5076 eright = e1;
5077 }
5078 if (eright->op == TOKimport)
5079 {
5080 s = ((ScopeExp *)eright)->sds;
5081 }
5082 else if (e1->op == TOKtype)
5083 {
5084 s = t1->isClassHandle();
5085 if (!s)
5086 { if (t1->ty == Tstruct)
5087 s = ((TypeStruct *)t1)->sym;
5088 else
5089 goto L1;
5090 }
5091 }
5092 else if (t1 && (t1->ty == Tstruct || t1->ty == Tclass))
5093 {
5094 s = t1->toDsymbol(sc);
5095 eleft = e1;
5096 }
5097 else if (t1 && t1->ty == Tpointer)
5098 {
5099 t1 = t1->next->toBasetype();
5100 if (t1->ty != Tstruct)
5101 goto L1;
5102 s = t1->toDsymbol(sc);
5103 eleft = e1;
5104 }
5105 else
5106 {
5107 L1:
5108 error("template %s is not a member of %s", ti->toChars(), e1->toChars());
5109 goto Lerr;
5110 }
5111
5112 assert(s);
5113 id = ti->name;
5114 s2 = s->search(loc, id, 0);
5115 if (!s2)
5116 { error("template identifier %s is not a member of %s %s", id->toChars(), s->kind(), s->ident->toChars());
5117 goto Lerr;
5118 }
5119 s = s2;
5120 s->semantic(sc);
5121 s = s->toAlias();
5122 td = s->isTemplateDeclaration();
5123 if (!td)
5124 {
5125 error("%s is not a template", id->toChars());
5126 goto Lerr;
5127 }
5128 if (global.errors)
5129 goto Lerr;
5130
5131 ti->tempdecl = td;
5132
5133 if (eleft)
5134 { Declaration *v;
5135
5136 ti->semantic(sc);
5137 s = ti->inst->toAlias();
5138 v = s->isDeclaration();
5139 if (v)
5140 { e = new DotVarExp(loc, eleft, v);
5141 e = e->semantic(sc);
5142 return e;
5143 }
5144 }
5145
5146 e = new ScopeExp(loc, ti);
5147 if (eleft)
5148 {
5149 e = new DotExp(loc, eleft, e);
5150 }
5151 e = e->semantic(sc);
5152 return e;
5153
5154 Lerr:
5155 return new IntegerExp(0);
5156 }
5157
5158 void DotTemplateInstanceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
5159 {
5160 expToCBuffer(buf, hgs, e1, PREC_primary);
5161 buf->writeByte('.');
5162 ti->toCBuffer(buf, hgs);
5163 }
5164
5165 /************************************************************/
5166
5167 DelegateExp::DelegateExp(Loc loc, Expression *e, FuncDeclaration *f)
5168 : UnaExp(loc, TOKdelegate, sizeof(DelegateExp), e)
5169 {
5170 this->func = f;
5171 }
5172
5173 Expression *DelegateExp::semantic(Scope *sc)
5174 {
5175 #if LOGSEMANTIC
5176 printf("DelegateExp::semantic('%s')\n", toChars());
5177 #endif
5178 if (!type)
5179 {
5180 e1 = e1->semantic(sc);
5181 type = new TypeDelegate(func->type);
5182 type = type->semantic(loc, sc);
5183 //-----------------
5184 /* For func, we need to get the
5185 * right 'this' pointer if func is in an outer class, but our
5186 * existing 'this' pointer is in an inner class.
5187 * This code is analogous to that used for variables
5188 * in DotVarExp::semantic().
5189 */
5190 AggregateDeclaration *ad = func->toParent()->isAggregateDeclaration();
5191 L10:
5192 Type *t = e1->type;
5193 if (func->needThis() && ad &&
5194 !(t->ty == Tpointer && t->next->ty == Tstruct &&
5195 ((TypeStruct *)t->next)->sym == ad) &&
5196 !(t->ty == Tstruct && ((TypeStruct *)t)->sym == ad)
5197 )
5198 {
5199 ClassDeclaration *cd = ad->isClassDeclaration();
5200 ClassDeclaration *tcd = t->isClassHandle();
5201
5202 if (!cd || !tcd ||
5203 !(tcd == cd || cd->isBaseOf(tcd, NULL))
5204 )
5205 {
5206 if (tcd && tcd->isNested())
5207 { // Try again with outer scope
5208
5209 e1 = new DotVarExp(loc, e1, tcd->vthis);
5210 e1 = e1->semantic(sc);
5211 goto L10;
5212 }
5213 #ifdef DEBUG
5214 printf("3: ");
5215 #endif
5216 error("this for %s needs to be type %s not type %s",
5217 func->toChars(), ad->toChars(), t->toChars());
5218 }
5219 }
5220 //-----------------
5221 }
5222 return this;
5223 }
5224
5225 void DelegateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
5226 {
5227 buf->writeByte('&');
5228 if (!func->isNested())
5229 {
5230 expToCBuffer(buf, hgs, e1, PREC_primary);
5231 buf->writeByte('.');
5232 }
5233 buf->writestring(func->toChars());
5234 }
5235
5236 /************************************************************/
5237
5238 DotTypeExp::DotTypeExp(Loc loc, Expression *e, Dsymbol *s)
5239 : UnaExp(loc, TOKdottype, sizeof(DotTypeExp), e)
5240 {
5241 this->sym = s;
5242 this->type = s->getType();
5243 }
5244
5245 Expression *DotTypeExp::semantic(Scope *sc)
5246 {
5247 #if LOGSEMANTIC
5248 printf("DotTypeExp::semantic('%s')\n", toChars());
5249 #endif
5250 UnaExp::semantic(sc);
5251 return this;
5252 }
5253
5254 void DotTypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
5255 {
5256 expToCBuffer(buf, hgs, e1, PREC_primary);
5257 buf->writeByte('.');
5258 buf->writestring(sym->toChars());
5259 }
5260
5261 /************************************************************/
5262
5263 CallExp::CallExp(Loc loc, Expression *e, Expressions *exps)
5264 : UnaExp(loc, TOKcall, sizeof(CallExp), e)
5265 {
5266 this->arguments = exps;
5267 }
5268
5269 CallExp::CallExp(Loc loc, Expression *e)
5270 : UnaExp(loc, TOKcall, sizeof(CallExp), e)
5271 {
5272 this->arguments = NULL;
5273 }
5274
5275 CallExp::CallExp(Loc loc, Expression *e, Expression *earg1)
5276 : UnaExp(loc, TOKcall, sizeof(CallExp), e)
5277 {
5278 Expressions *arguments = new Expressions();
5279 arguments->setDim(1);
5280 arguments->data[0] = (void *)earg1;
5281
5282 this->arguments = arguments;
5283 }
5284
5285 CallExp::CallExp(Loc loc, Expression *e, Expression *earg1, Expression *earg2)
5286 : UnaExp(loc, TOKcall, sizeof(CallExp), e)
5287 {
5288 Expressions *arguments = new Expressions();
5289 arguments->setDim(2);
5290 arguments->data[0] = (void *)earg1;
5291 arguments->data[1] = (void *)earg2;
5292
5293 this->arguments = arguments;
5294 }
5295
5296 Expression *CallExp::syntaxCopy()
5297 {
5298 return new CallExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments));
5299 }
5300
5301
5302 Expression *CallExp::semantic(Scope *sc)
5303 {
5304 TypeFunction *tf;
5305 FuncDeclaration *f;
5306 int i;
5307 Type *t1;
5308 int istemp;
5309
5310 #if LOGSEMANTIC
5311 printf("CallExp::semantic('%s')\n", toChars());
5312 #endif
5313 if (type)
5314 return this; // semantic() already run
5315 #if 0
5316 if (arguments && arguments->dim)
5317 {
5318 Expression *earg = (Expression *)arguments->data[0];
5319 earg->print();
5320 if (earg->type) earg->type->print();
5321 }
5322 #endif
5323
5324 if (e1->op == TOKdelegate)
5325 { DelegateExp *de = (DelegateExp *)e1;
5326
5327 e1 = new DotVarExp(de->loc, de->e1, de->func);
5328 return semantic(sc);
5329 }
5330
5331 /* Transform:
5332 * array.id(args) into id(array,args)
5333 * aa.remove(arg) into delete aa[arg]
5334 */
5335 if (e1->op == TOKdot)
5336 {
5337 // BUG: we should handle array.a.b.c.e(args) too
5338
5339 DotIdExp *dotid = (DotIdExp *)(e1);
5340 dotid->e1 = dotid->e1->semantic(sc);
5341 assert(dotid->e1);
5342 if (dotid->e1->type)
5343 {
5344 TY e1ty = dotid->e1->type->toBasetype()->ty;
5345 if (e1ty == Taarray && dotid->ident == Id::remove)
5346 {
5347 if (!arguments || arguments->dim != 1)
5348 { error("expected key as argument to aa.remove()");
5349 goto Lagain;
5350 }
5351 Expression *key = (Expression *)arguments->data[0];
5352 key = key->semantic(sc);
5353 key = resolveProperties(sc, key);
5354 key->rvalue();
5355
5356 TypeAArray *taa = (TypeAArray *)dotid->e1->type->toBasetype();
5357 key = key->implicitCastTo(sc, taa->index);
5358 key = key->implicitCastTo(sc, taa->key);
5359
5360 return new RemoveExp(loc, dotid->e1, key);
5361 }
5362 else if (e1ty == Tarray || e1ty == Tsarray || e1ty == Taarray)
5363 {
5364 if (!arguments)
5365 arguments = new Expressions();
5366 arguments->shift(dotid->e1);
5367 e1 = new IdentifierExp(dotid->loc, dotid->ident);
5368 }
5369 }
5370 }
5371
5372 istemp = 0;
5373 Lagain:
5374 f = NULL;
5375 if (e1->op == TOKthis || e1->op == TOKsuper)
5376 {
5377 // semantic() run later for these
5378 }
5379 else
5380 {
5381 UnaExp::semantic(sc);
5382
5383 /* Look for e1 being a lazy parameter
5384 */
5385 if (e1->op == TOKvar)
5386 { VarExp *ve = (VarExp *)e1;
5387
5388 if (ve->var->storage_class & STClazy)
5389 {
5390 TypeFunction *tf = new TypeFunction(NULL, ve->var->type, 0, LINKd);
5391 TypeDelegate *t = new TypeDelegate(tf);
5392 ve->type = t->semantic(loc, sc);
5393 }
5394 }
5395
5396 if (e1->op == TOKimport)
5397 { // Perhaps this should be moved to ScopeExp::semantic()
5398 ScopeExp *se = (ScopeExp *)e1;
5399 e1 = new DsymbolExp(loc, se->sds);
5400 e1 = e1->semantic(sc);
5401 }
5402 #if 1 // patch for #540 by Oskar Linde
5403 else if (e1->op == TOKdotexp)
5404 {
5405 DotExp *de = (DotExp *) e1;
5406
5407 if (de->e2->op == TOKimport)
5408 { // This should *really* be moved to ScopeExp::semantic()
5409 ScopeExp *se = (ScopeExp *)de->e2;
5410 de->e2 = new DsymbolExp(loc, se->sds);
5411 de->e2 = de->e2->semantic(sc);
5412 }
5413
5414 if (de->e2->op == TOKtemplate)
5415 { TemplateExp *te = (TemplateExp *) de->e2;
5416 e1 = new DotTemplateExp(loc,de->e1,te->td);
5417 }
5418 }
5419 #endif
5420 }
5421
5422 if (e1->op == TOKcomma)
5423 {
5424 CommaExp *ce = (CommaExp *)e1;
5425
5426 e1 = ce->e2;
5427 e1->type = ce->type;
5428 ce->e2 = this;
5429 ce->type = NULL;
5430 return ce->semantic(sc);
5431 }
5432
5433 t1 = NULL;
5434 if (e1->type)
5435 t1 = e1->type->toBasetype();
5436
5437 // Check for call operator overload
5438 if (t1)
5439 { AggregateDeclaration *ad;
5440
5441 if (t1->ty == Tstruct)
5442 {
5443 ad = ((TypeStruct *)t1)->sym;
5444 if (search_function(ad, Id::call))
5445 goto L1; // overload of opCall, therefore it's a call
5446 /* It's a struct literal
5447 */
5448 Expression *e = new StructLiteralExp(loc, (StructDeclaration *)ad, arguments);
5449 e = e->semantic(sc);
5450 return e;
5451 }
5452 else if (t1->ty == Tclass)
5453 {
5454 ad = ((TypeClass *)t1)->sym;
5455 goto L1;
5456 L1:
5457 // Rewrite as e1.call(arguments)
5458 Expression *e = new DotIdExp(loc, e1, Id::call);
5459 e = new CallExp(loc, e, arguments);
5460 e = e->semantic(sc);
5461 return e;
5462 }
5463 }
5464
5465 arrayExpressionSemantic(arguments, sc);
5466 preFunctionArguments(loc, sc, arguments);
5467
5468 if (e1->op == TOKdotvar && t1->ty == Tfunction ||
5469 e1->op == TOKdottd)
5470 {
5471 DotVarExp *dve;
5472 DotTemplateExp *dte;
5473 AggregateDeclaration *ad;
5474 UnaExp *ue = (UnaExp *)(e1);
5475
5476 if (e1->op == TOKdotvar)
5477 { // Do overload resolution
5478 dve = (DotVarExp *)(e1);
5479
5480 f = dve->var->isFuncDeclaration();
5481 assert(f);
5482 f = f->overloadResolve(loc, arguments);
5483
5484 ad = f->toParent()->isAggregateDeclaration();
5485 }
5486 else
5487 { dte = (DotTemplateExp *)(e1);
5488 TemplateDeclaration *td = dte->td;
5489 assert(td);
5490 if (!arguments)
5491 // Should fix deduce() so it works on NULL argument
5492 arguments = new Expressions();
5493 f = td->deduce(sc, loc, NULL, arguments);
5494 if (!f)
5495 { type = Type::terror;
5496 return this;
5497 }
5498 ad = td->toParent()->isAggregateDeclaration();
5499 }
5500 /* Now that we have the right function f, we need to get the
5501 * right 'this' pointer if f is in an outer class, but our
5502 * existing 'this' pointer is in an inner class.
5503 * This code is analogous to that used for variables
5504 * in DotVarExp::semantic().
5505 */
5506 L10:
5507 Type *t = ue->e1->type->toBasetype();
5508 if (f->needThis() && ad &&
5509 !(t->ty == Tpointer && t->next->ty == Tstruct &&
5510 ((TypeStruct *)t->next)->sym == ad) &&
5511 !(t->ty == Tstruct && ((TypeStruct *)t)->sym == ad)
5512 )
5513 {
5514 ClassDeclaration *cd = ad->isClassDeclaration();
5515 ClassDeclaration *tcd = t->isClassHandle();
5516
5517 if (!cd || !tcd ||
5518 !(tcd == cd || cd->isBaseOf(tcd, NULL))
5519 )
5520 {
5521 if (tcd && tcd->isNested())
5522 { // Try again with outer scope
5523
5524 ue->e1 = new DotVarExp(loc, ue->e1, tcd->vthis);
5525 ue->e1 = ue->e1->semantic(sc);
5526 goto L10;
5527 }
5528 #ifdef DEBUG
5529 printf("1: ");
5530 #endif
5531 error("this for %s needs to be type %s not type %s",
5532 f->toChars(), ad->toChars(), t->toChars());
5533 }
5534 }
5535
5536 checkDeprecated(sc, f);
5537 accessCheck(loc, sc, ue->e1, f);
5538 if (!f->needThis())
5539 {
5540 VarExp *ve = new VarExp(loc, f);
5541 e1 = new CommaExp(loc, ue->e1, ve);
5542 e1->type = f->type;
5543 }
5544 else
5545 {
5546 if (e1->op == TOKdotvar)
5547 dve->var = f;
5548 else
5549 e1 = new DotVarExp(loc, dte->e1, f);
5550 e1->type = f->type;
5551
5552 // See if we need to adjust the 'this' pointer
5553 AggregateDeclaration *ad = f->isThis();
5554 ClassDeclaration *cd = ue->e1->type->isClassHandle();
5555 if (ad && cd && ad->isClassDeclaration() && ad != cd &&
5556 ue->e1->op != TOKsuper)
5557 {
5558 ue->e1 = ue->e1->castTo(sc, ad->type); //new CastExp(loc, ue->e1, ad->type);
5559 ue->e1 = ue->e1->semantic(sc);
5560 }
5561 }
5562 t1 = e1->type;
5563 }
5564 else if (e1->op == TOKsuper)
5565 {
5566 // Base class constructor call
5567 ClassDeclaration *cd = NULL;
5568
5569 if (sc->func)
5570 cd = sc->func->toParent()->isClassDeclaration();
5571 if (!cd || !cd->baseClass || !sc->func->isCtorDeclaration())
5572 {
5573 error("super class constructor call must be in a constructor");
5574 type = Type::terror;
5575 return this;
5576 }
5577 else
5578 {
5579 f = cd->baseClass->ctor;
5580 if (!f)
5581 { error("no super class constructor for %s", cd->baseClass->toChars());
5582 type = Type::terror;
5583 return this;
5584 }
5585 else
5586 {
5587 #if 0
5588 if (sc->callSuper & (CSXthis | CSXsuper))
5589 error("reference to this before super()");
5590 #endif
5591 if (sc->noctor || sc->callSuper & CSXlabel)
5592 error("constructor calls not allowed in loops or after labels");
5593 if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor))
5594 error("multiple constructor calls");
5595 sc->callSuper |= CSXany_ctor | CSXsuper_ctor;
5596
5597 f = f->overloadResolve(loc, arguments);
5598 checkDeprecated(sc, f);
5599 e1 = new DotVarExp(e1->loc, e1, f);
5600 e1 = e1->semantic(sc);
5601 t1 = e1->type;
5602 }
5603 }
5604 }
5605 else if (e1->op == TOKthis)
5606 {
5607 // same class constructor call
5608 ClassDeclaration *cd = NULL;
5609
5610 if (sc->func)
5611 cd = sc->func->toParent()->isClassDeclaration();
5612 if (!cd || !sc->func->isCtorDeclaration())
5613 {
5614 error("class constructor call must be in a constructor");
5615 type = Type::terror;
5616 return this;
5617 }
5618 else
5619 {
5620 #if 0
5621 if (sc->callSuper & (CSXthis | CSXsuper))
5622 error("reference to this before super()");
5623 #endif
5624 if (sc->noctor || sc->callSuper & CSXlabel)
5625 error("constructor calls not allowed in loops or after labels");
5626 if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor))
5627 error("multiple constructor calls");
5628 sc->callSuper |= CSXany_ctor | CSXthis_ctor;
5629
5630 f = cd->ctor;
5631 f = f->overloadResolve(loc, arguments);
5632 checkDeprecated(sc, f);
5633 e1 = new DotVarExp(e1->loc, e1, f);
5634 e1 = e1->semantic(sc);
5635 t1 = e1->type;
5636
5637 // BUG: this should really be done by checking the static
5638 // call graph
5639 if (f == sc->func)
5640 error("cyclic constructor call");
5641 }
5642 }
5643 else if (!t1)
5644 {
5645 error("function expected before (), not '%s'", e1->toChars());
5646 type = Type::terror;
5647 return this;
5648 }
5649 else if (t1->ty != Tfunction)
5650 {
5651 if (t1->ty == Tdelegate)
5652 {
5653 assert(t1->next->ty == Tfunction);
5654 tf = (TypeFunction *)(t1->next);
5655 goto Lcheckargs;
5656 }
5657 else if (t1->ty == Tpointer && t1->next->ty == Tfunction)
5658 { Expression *e;
5659
5660 e = new PtrExp(loc, e1);
5661 t1 = t1->next;
5662 e->type = t1;
5663 e1 = e;
5664 }
5665 else if (e1->op == TOKtemplate)
5666 {
5667 TemplateExp *te = (TemplateExp *)e1;
5668 f = te->td->deduce(sc, loc, NULL, arguments);
5669 if (!f)
5670 { type = Type::terror;
5671 return this;
5672 }
5673 if (f->needThis() && hasThis(sc))
5674 {
5675 // Supply an implicit 'this', as in
5676 // this.ident
5677
5678 e1 = new DotTemplateExp(loc, (new ThisExp(loc))->semantic(sc), te->td);
5679 goto Lagain;
5680 }
5681
5682 e1 = new VarExp(loc, f);
5683 goto Lagain;
5684 }
5685 else
5686 { error("function expected before (), not %s of type %s", e1->toChars(), e1->type->toChars());
5687 type = Type::terror;
5688 return this;
5689 }
5690 }
5691 else if (e1->op == TOKvar)
5692 {
5693 // Do overload resolution
5694 VarExp *ve = (VarExp *)e1;
5695
5696 f = ve->var->isFuncDeclaration();
5697 assert(f);
5698
5699 // Look to see if f is really a function template
5700 if (0 && !istemp && f->parent)
5701 { TemplateInstance *ti = f->parent->isTemplateInstance();
5702
5703 if (ti &&
5704 (ti->name == f->ident ||
5705 ti->toAlias()->ident == f->ident)
5706 &&
5707 ti->tempdecl)
5708 {
5709 /* This is so that one can refer to the enclosing
5710 * template, even if it has the same name as a member
5711 * of the template, if it has a !(arguments)
5712 */
5713 TemplateDeclaration *tempdecl = ti->tempdecl;
5714 if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's
5715 tempdecl = tempdecl->overroot; // then get the start
5716 e1 = new TemplateExp(loc, tempdecl);
5717 istemp = 1;
5718 goto Lagain;
5719 }
5720 }
5721
5722 f = f->overloadResolve(loc, arguments);
5723 checkDeprecated(sc, f);
5724
5725 if (f->needThis() && hasThis(sc))
5726 {
5727 // Supply an implicit 'this', as in
5728 // this.ident
5729
5730 e1 = new DotVarExp(loc, new ThisExp(loc), f);
5731 goto Lagain;
5732 }
5733
5734 accessCheck(loc, sc, NULL, f);
5735
5736 ve->var = f;
5737 ve->type = f->type;
5738 t1 = f->type;
5739 }
5740 assert(t1->ty == Tfunction);
5741 tf = (TypeFunction *)(t1);
5742
5743 Lcheckargs:
5744 assert(tf->ty == Tfunction);
5745 type = tf->next;
5746
5747 if (!arguments)
5748 arguments = new Expressions();
5749 functionArguments(loc, sc, tf, arguments);
5750
5751 assert(type);
5752
5753 if (f && f->tintro)
5754 {
5755 Type *t = type;
5756 int offset = 0;
5757
5758 if (f->tintro->next->isBaseOf(t, &offset) && offset)
5759 {
5760 type = f->tintro->next;
5761 return castTo(sc, t);
5762 }
5763 }
5764
5765 return this;
5766 }
5767
5768 int CallExp::checkSideEffect(int flag)
5769 {
5770 return 1;
5771 }
5772
5773 Expression *CallExp::toLvalue(Scope *sc, Expression *e)
5774 {
5775 if (type->toBasetype()->ty == Tstruct)
5776 return this;
5777 else
5778 return Expression::toLvalue(sc, e);
5779 }
5780
5781 void CallExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
5782 { int i;
5783
5784 expToCBuffer(buf, hgs, e1, precedence[op]);
5785 buf->writeByte('(');
5786 argsToCBuffer(buf, arguments, hgs);
5787 buf->writeByte(')');
5788 }
5789
5790
5791 /************************************************************/
5792
5793 AddrExp::AddrExp(Loc loc, Expression *e)
5794 : UnaExp(loc, TOKaddress, sizeof(AddrExp), e)
5795 {
5796 }
5797
5798 Expression *AddrExp::semantic(Scope *sc)
5799 {
5800 #if LOGSEMANTIC
5801 printf("AddrExp::semantic('%s')\n", toChars());
5802 #endif
5803 if (!type)
5804 {
5805 UnaExp::semantic(sc);
5806 e1 = e1->toLvalue(sc, NULL);
5807 if (!e1->type)
5808 {
5809 error("cannot take address of %s", e1->toChars());
5810 type = Type::tint32;
5811 return this;
5812 }
5813 type = e1->type->pointerTo();
5814
5815 // See if this should really be a delegate
5816 if (e1->op == TOKdotvar)
5817 {
5818 DotVarExp *dve = (DotVarExp *)e1;
5819 FuncDeclaration *f = dve->var->isFuncDeclaration();
5820
5821 if (f)
5822 { Expression *e;
5823
5824 e = new DelegateExp(loc, dve->e1, f);
5825 e = e->semantic(sc);
5826 return e;
5827 }
5828 }
5829 else if (e1->op == TOKvar)
5830 {
5831 VarExp *dve = (VarExp *)e1;
5832 FuncDeclaration *f = dve->var->isFuncDeclaration();
5833
5834 if (f && f->isNested())
5835 { Expression *e;
5836
5837 e = new DelegateExp(loc, e1, f);
5838 e = e->semantic(sc);
5839 return e;
5840 }
5841 }
5842 else if (e1->op == TOKarray)
5843 {
5844 if (e1->type->toBasetype()->ty == Tbit)
5845 error("cannot take address of bit in array");
5846 }
5847 return optimize(WANTvalue);
5848 }
5849 return this;
5850 }
5851
5852 /************************************************************/
5853
5854 PtrExp::PtrExp(Loc loc, Expression *e)
5855 : UnaExp(loc, TOKstar, sizeof(PtrExp), e)
5856 {
5857 if (e->type)
5858 type = e->type->next;
5859 }
5860
5861 PtrExp::PtrExp(Loc loc, Expression *e, Type *t)
5862 : UnaExp(loc, TOKstar, sizeof(PtrExp), e)
5863 {
5864 type = t;
5865 }
5866
5867 Expression *PtrExp::semantic(Scope *sc)
5868 { Type *tb;
5869
5870 #if LOGSEMANTIC
5871 printf("PtrExp::semantic('%s')\n", toChars());
5872 #endif
5873 UnaExp::semantic(sc);
5874 e1 = resolveProperties(sc, e1);
5875 if (type)
5876 return this;
5877 if (!e1->type)
5878 printf("PtrExp::semantic('%s')\n", toChars());
5879 tb = e1->type->toBasetype();
5880 switch (tb->ty)
5881 {
5882 case Tpointer:
5883 type = tb->next;
5884 if (type->isbit())
5885 { Expression *e;
5886
5887 // Rewrite *p as p[0]
5888 e = new IndexExp(loc, e1, new IntegerExp(0));
5889 return e->semantic(sc);
5890 }
5891 break;
5892
5893 case Tsarray:
5894 case Tarray:
5895 type = tb->next;
5896 e1 = e1->castTo(sc, type->pointerTo());
5897 break;
5898
5899 default:
5900 error("can only * a pointer, not a '%s'", e1->type->toChars());
5901 type = Type::tint32;
5902 break;
5903 }
5904 rvalue();
5905 return this;
5906 }
5907
5908 Expression *PtrExp::toLvalue(Scope *sc, Expression *e)
5909 {
5910 #if 0
5911 tym = tybasic(e1->ET->Tty);
5912 if (!(tyscalar(tym) ||
5913 tym == TYstruct ||
5914 tym == TYarray && e->Eoper == TOKaddr))
5915 synerr(EM_lvalue); // lvalue expected
5916 #endif
5917 return this;
5918 }
5919
5920 void PtrExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
5921 {
5922 buf->writeByte('*');
5923 expToCBuffer(buf, hgs, e1, precedence[op]);
5924 }
5925
5926 /************************************************************/
5927
5928 NegExp::NegExp(Loc loc, Expression *e)
5929 : UnaExp(loc, TOKneg, sizeof(NegExp), e)
5930 {
5931 }
5932
5933 Expression *NegExp::semantic(Scope *sc)
5934 { Expression *e;
5935
5936 #if LOGSEMANTIC
5937 printf("NegExp::semantic('%s')\n", toChars());
5938 #endif
5939 if (!type)
5940 {
5941 UnaExp::semantic(sc);
5942 e1 = resolveProperties(sc, e1);
5943 e = op_overload(sc);
5944 if (e)
5945 return e;
5946
5947 e1->checkNoBool();
5948 e1->checkArithmetic();
5949 type = e1->type;
5950 }
5951 return this;
5952 }
5953
5954 /************************************************************/
5955
5956 UAddExp::UAddExp(Loc loc, Expression *e)
5957 : UnaExp(loc, TOKuadd, sizeof(UAddExp), e)
5958 {
5959 }
5960
5961 Expression *UAddExp::semantic(Scope *sc)
5962 { Expression *e;
5963
5964 #if LOGSEMANTIC
5965 printf("UAddExp::semantic('%s')\n", toChars());
5966 #endif
5967 assert(!type);
5968 UnaExp::semantic(sc);
5969 e1 = resolveProperties(sc, e1);
5970 e = op_overload(sc);
5971 if (e)
5972 return e;
5973 e1->checkNoBool();
5974 e1->checkArithmetic();
5975 return e1;
5976 }
5977
5978 /************************************************************/
5979
5980 ComExp::ComExp(Loc loc, Expression *e)
5981 : UnaExp(loc, TOKtilde, sizeof(ComExp), e)
5982 {
5983 }
5984
5985 Expression *ComExp::semantic(Scope *sc)
5986 { Expression *e;
5987
5988 if (!type)
5989 {
5990 UnaExp::semantic(sc);
5991 e1 = resolveProperties(sc, e1);
5992 e = op_overload(sc);
5993 if (e)
5994 return e;
5995
5996 e1->checkNoBool();
5997 e1 = e1->checkIntegral();
5998 type = e1->type;
5999 }
6000 return this;
6001 }
6002
6003 /************************************************************/
6004
6005 NotExp::NotExp(Loc loc, Expression *e)
6006 : UnaExp(loc, TOKnot, sizeof(NotExp), e)
6007 {
6008 }
6009
6010 Expression *NotExp::semantic(Scope *sc)
6011 {
6012 UnaExp::semantic(sc);
6013 e1 = resolveProperties(sc, e1);
6014 e1 = e1->checkToBoolean();
6015 type = Type::tboolean;
6016 return this;
6017 }
6018
6019 int NotExp::isBit()
6020 {
6021 return TRUE;
6022 }
6023
6024
6025
6026 /************************************************************/
6027
6028 BoolExp::BoolExp(Loc loc, Expression *e, Type *t)
6029 : UnaExp(loc, TOKtobool, sizeof(BoolExp), e)
6030 {
6031 type = t;
6032 }
6033
6034 Expression *BoolExp::semantic(Scope *sc)
6035 {
6036 UnaExp::semantic(sc);
6037 e1 = resolveProperties(sc, e1);
6038 e1 = e1->checkToBoolean();
6039 type = Type::tboolean;
6040 return this;
6041 }
6042
6043 int BoolExp::isBit()
6044 {
6045 return TRUE;
6046 }
6047
6048 /************************************************************/
6049
6050 DeleteExp::DeleteExp(Loc loc, Expression *e)
6051 : UnaExp(loc, TOKdelete, sizeof(DeleteExp), e)
6052 {
6053 }
6054
6055 Expression *DeleteExp::semantic(Scope *sc)
6056 {
6057 Type *tb;
6058
6059 UnaExp::semantic(sc);
6060 e1 = resolveProperties(sc, e1);
6061 e1 = e1->toLvalue(sc, NULL);
6062 type = Type::tvoid;
6063
6064 tb = e1->type->toBasetype();
6065 switch (tb->ty)
6066 { case Tclass:
6067 { TypeClass *tc = (TypeClass *)tb;
6068 ClassDeclaration *cd = tc->sym;
6069
6070 if (cd->isInterfaceDeclaration() && cd->isCOMclass())
6071 error("cannot delete instance of COM interface %s", cd->toChars());
6072 break;
6073 }
6074 case Tpointer:
6075 tb = tb->next->toBasetype();
6076 if (tb->ty == Tstruct)
6077 {
6078 TypeStruct *ts = (TypeStruct *)tb;
6079 StructDeclaration *sd = ts->sym;
6080 FuncDeclaration *f = sd->aggDelete;
6081
6082 if (f)
6083 {
6084 Expression *e;
6085 Expression *ec;
6086 Type *tpv = Type::tvoid->pointerTo();
6087
6088 e = e1;
6089 e->type = tpv;
6090 ec = new VarExp(loc, f);
6091 e = new CallExp(loc, ec, e);
6092 return e->semantic(sc);
6093 }
6094 }
6095 break;
6096
6097 case Tarray:
6098 break;
6099
6100 default:
6101 if (e1->op == TOKindex)
6102 {
6103 IndexExp *ae = (IndexExp *)(e1);
6104 Type *tb1 = ae->e1->type->toBasetype();
6105 if (tb1->ty == Taarray)
6106 break;
6107 }
6108 error("cannot delete type %s", e1->type->toChars());
6109 break;
6110 }
6111
6112 if (e1->op == TOKindex)
6113 {
6114 IndexExp *ae = (IndexExp *)(e1);
6115 Type *tb1 = ae->e1->type->toBasetype();
6116 if (tb1->ty == Taarray)
6117 { if (!global.params.useDeprecated)
6118 error("delete aa[key] deprecated, use aa.remove(key)");
6119 }
6120 }
6121
6122 return this;
6123 }
6124
6125 int DeleteExp::checkSideEffect(int flag)
6126 {
6127 return 1;
6128 }
6129
6130 Expression *DeleteExp::checkToBoolean()
6131 {
6132 error("delete does not give a boolean result");
6133 return this;
6134 }
6135
6136 void DeleteExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6137 {
6138 buf->writestring("delete ");
6139 expToCBuffer(buf, hgs, e1, precedence[op]);
6140 }
6141
6142 /************************************************************/
6143
6144 CastExp::CastExp(Loc loc, Expression *e, Type *t)
6145 : UnaExp(loc, TOKcast, sizeof(CastExp), e)
6146 {
6147 to = t;
6148 }
6149
6150 Expression *CastExp::syntaxCopy()
6151 {
6152 return new CastExp(loc, e1->syntaxCopy(), to->syntaxCopy());
6153 }
6154
6155
6156 Expression *CastExp::semantic(Scope *sc)
6157 { Expression *e;
6158 BinExp *b;
6159 UnaExp *u;
6160
6161 #if LOGSEMANTIC
6162 printf("CastExp::semantic('%s')\n", toChars());
6163 #endif
6164
6165 //static int x; assert(++x < 10);
6166
6167 if (type)
6168 return this;
6169 UnaExp::semantic(sc);
6170 if (e1->type) // if not a tuple
6171 {
6172 e1 = resolveProperties(sc, e1);
6173 to = to->semantic(loc, sc);
6174
6175 e = op_overload(sc);
6176 if (e)
6177 {
6178 return e->implicitCastTo(sc, to);
6179 }
6180
6181 Type *tob = to->toBasetype();
6182 if (tob->ty == Tstruct && !tob->equals(e1->type->toBasetype()))
6183 {
6184 /* Look to replace:
6185 * cast(S)t
6186 * with:
6187 * S(t)
6188 */
6189
6190 // Rewrite as to.call(e1)
6191 e = new TypeExp(loc, to);
6192 e = new DotIdExp(loc, e, Id::call);
6193 e = new CallExp(loc, e, e1);
6194 e = e->semantic(sc);
6195 return e;
6196 }
6197 }
6198 e = e1->castTo(sc, to);
6199 return e;
6200 }
6201
6202 int CastExp::checkSideEffect(int flag)
6203 {
6204 /* if not:
6205 * cast(void)
6206 * cast(classtype)func()
6207 */
6208 if (!to->equals(Type::tvoid) &&
6209 !(to->ty == Tclass && e1->op == TOKcall && e1->type->ty == Tclass))
6210 return Expression::checkSideEffect(flag);
6211 return 1;
6212 }
6213
6214 void CastExp::checkEscape()
6215 { Type *tb = type->toBasetype();
6216 if (tb->ty == Tarray && e1->op == TOKvar &&
6217 e1->type->toBasetype()->ty == Tsarray)
6218 { VarExp *ve = (VarExp *)e1;
6219 VarDeclaration *v = ve->var->isVarDeclaration();
6220 if (v)
6221 {
6222 if (!v->isDataseg() && !v->isParameter())
6223 error("escaping reference to local %s", v->toChars());
6224 }
6225 }
6226 }
6227
6228 void CastExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6229 {
6230 buf->writestring("cast(");
6231 to->toCBuffer(buf, NULL, hgs);
6232 buf->writeByte(')');
6233 expToCBuffer(buf, hgs, e1, precedence[op]);
6234 }
6235
6236
6237 /************************************************************/
6238
6239 SliceExp::SliceExp(Loc loc, Expression *e1, Expression *lwr, Expression *upr)
6240 : UnaExp(loc, TOKslice, sizeof(SliceExp), e1)
6241 {
6242 this->upr = upr;
6243 this->lwr = lwr;
6244 lengthVar = NULL;
6245 }
6246
6247 Expression *SliceExp::syntaxCopy()
6248 {
6249 Expression *lwr = NULL;
6250 if (this->lwr)
6251 lwr = this->lwr->syntaxCopy();
6252
6253 Expression *upr = NULL;
6254 if (this->upr)
6255 upr = this->upr->syntaxCopy();
6256
6257 return new SliceExp(loc, e1->syntaxCopy(), lwr, upr);
6258 }
6259
6260 Expression *SliceExp::semantic(Scope *sc)
6261 { Expression *e;
6262 AggregateDeclaration *ad;
6263 //FuncDeclaration *fd;
6264 ScopeDsymbol *sym;
6265
6266 #if LOGSEMANTIC
6267 printf("SliceExp::semantic('%s')\n", toChars());
6268 #endif
6269 if (type)
6270 return this;
6271
6272 UnaExp::semantic(sc);
6273 e1 = resolveProperties(sc, e1);
6274
6275 e = this;
6276
6277 Type *t = e1->type->toBasetype();
6278 if (t->ty == Tpointer)
6279 {
6280 if (!lwr || !upr)
6281 error("need upper and lower bound to slice pointer");
6282 }
6283 else if (t->ty == Tarray)
6284 {
6285 }
6286 else if (t->ty == Tsarray)
6287 {
6288 }
6289 else if (t->ty == Tclass)
6290 {
6291 ad = ((TypeClass *)t)->sym;
6292 goto L1;
6293 }
6294 else if (t->ty == Tstruct)
6295 {
6296 ad = ((TypeStruct *)t)->sym;
6297
6298 L1:
6299 if (search_function(ad, Id::slice))
6300 {
6301 // Rewrite as e1.slice(lwr, upr)
6302 e = new DotIdExp(loc, e1, Id::slice);
6303
6304 if (lwr)
6305 {
6306 assert(upr);
6307 e = new CallExp(loc, e, lwr, upr);
6308 }
6309 else
6310 { assert(!upr);
6311 e = new CallExp(loc, e);
6312 }
6313 e = e->semantic(sc);
6314 return e;
6315 }
6316 goto Lerror;
6317 }
6318 else if (t->ty == Ttuple)
6319 {
6320 if (!lwr && !upr)
6321 return e1;
6322 if (!lwr || !upr)
6323 { error("need upper and lower bound to slice tuple");
6324 goto Lerror;
6325 }
6326 }
6327 else
6328 goto Lerror;
6329
6330 if (t->ty == Tsarray || t->ty == Tarray || t->ty == Ttuple)
6331 {
6332 sym = new ArrayScopeSymbol(this);
6333 sym->loc = loc;
6334 sym->parent = sc->scopesym;
6335 sc = sc->push(sym);
6336 }
6337
6338 if (lwr)
6339 { lwr = lwr->semantic(sc);
6340 lwr = resolveProperties(sc, lwr);
6341 lwr = lwr->implicitCastTo(sc, Type::tsize_t);
6342 }
6343 if (upr)
6344 { upr = upr->semantic(sc);
6345 upr = resolveProperties(sc, upr);
6346 upr = upr->implicitCastTo(sc, Type::tsize_t);
6347 }
6348
6349 if (t->ty == Tsarray || t->ty == Tarray || t->ty == Ttuple)
6350 sc->pop();
6351
6352 if (t->ty == Ttuple)
6353 {
6354 lwr = lwr->optimize(WANTvalue);
6355 upr = upr->optimize(WANTvalue);
6356 uinteger_t i1 = lwr->toUInteger();
6357 uinteger_t i2 = upr->toUInteger();
6358
6359 size_t length;
6360 TupleExp *te;
6361 TypeTuple *tup;
6362
6363 if (e1->op == TOKtuple) // slicing an expression tuple
6364 { te = (TupleExp *)e1;
6365 length = te->exps->dim;
6366 }
6367 else if (e1->op == TOKtype) // slicing a type tuple
6368 { tup = (TypeTuple *)t;
6369 length = Argument::dim(tup->arguments);
6370 }
6371 else
6372 assert(0);
6373
6374 if (i1 <= i2 && i2 <= length)
6375 { size_t j1 = (size_t) i1;
6376 size_t j2 = (size_t) i2;
6377
6378 if (e1->op == TOKtuple)
6379 { Expressions *exps = new Expressions;
6380 exps->setDim(j2 - j1);
6381 for (size_t i = 0; i < j2 - j1; i++)
6382 { Expression *e = (Expression *)te->exps->data[j1 + i];
6383 exps->data[i] = (void *)e;
6384 }
6385 e = new TupleExp(loc, exps);
6386 }
6387 else
6388 { Arguments *args = new Arguments;
6389 args->reserve(j2 - j1);
6390 for (size_t i = j1; i < j2; i++)
6391 { Argument *arg = Argument::getNth(tup->arguments, i);
6392 args->push(arg);
6393 }
6394 e = new TypeExp(e1->loc, new TypeTuple(args));
6395 }
6396 e = e->semantic(sc);
6397 }
6398 else
6399 {
6400 error("string slice [%ju .. %ju] is out of bounds", i1, i2);
6401 e = e1;
6402 }
6403 return e;
6404 }
6405
6406 type = t->next->arrayOf();
6407 return e;
6408
6409 Lerror:
6410 char *s;
6411 if (t->ty == Tvoid)
6412 s = e1->toChars();
6413 else
6414 s = t->toChars();
6415 error("%s cannot be sliced with []", s);
6416 type = Type::terror;
6417 return e;
6418 }
6419
6420 void SliceExp::checkEscape()
6421 {
6422 e1->checkEscape();
6423 }
6424
6425 Expression *SliceExp::toLvalue(Scope *sc, Expression *e)
6426 {
6427 return this;
6428 }
6429
6430 Expression *SliceExp::modifiableLvalue(Scope *sc, Expression *e)
6431 {
6432 error("slice expression %s is not a modifiable lvalue", toChars());
6433 return this;
6434 }
6435
6436 void SliceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6437 {
6438 expToCBuffer(buf, hgs, e1, precedence[op]);
6439 buf->writeByte('[');
6440 if (upr || lwr)
6441 {
6442 if (lwr)
6443 expToCBuffer(buf, hgs, lwr, PREC_assign);
6444 else
6445 buf->writeByte('0');
6446 buf->writestring("..");
6447 if (upr)
6448 expToCBuffer(buf, hgs, upr, PREC_assign);
6449 else
6450 buf->writestring("length"); // BUG: should be array.length
6451 }
6452 buf->writeByte(']');
6453 }
6454
6455 /********************** ArrayLength **************************************/
6456
6457 ArrayLengthExp::ArrayLengthExp(Loc loc, Expression *e1)
6458 : UnaExp(loc, TOKarraylength, sizeof(ArrayLengthExp), e1)
6459 {
6460 }
6461
6462 Expression *ArrayLengthExp::semantic(Scope *sc)
6463 { Expression *e;
6464
6465 #if LOGSEMANTIC
6466 printf("ArrayLengthExp::semantic('%s')\n", toChars());
6467 #endif
6468 if (!type)
6469 {
6470 UnaExp::semantic(sc);
6471 e1 = resolveProperties(sc, e1);
6472
6473 type = Type::tsize_t;
6474 }
6475 return this;
6476 }
6477
6478 void ArrayLengthExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6479 {
6480 expToCBuffer(buf, hgs, e1, PREC_primary);
6481 buf->writestring(".length");
6482 }
6483
6484 /*********************** ArrayExp *************************************/
6485
6486 // e1 [ i1, i2, i3, ... ]
6487
6488 ArrayExp::ArrayExp(Loc loc, Expression *e1, Expressions *args)
6489 : UnaExp(loc, TOKarray, sizeof(ArrayExp), e1)
6490 {
6491 arguments = args;
6492 }
6493
6494 Expression *ArrayExp::syntaxCopy()
6495 {
6496 return new ArrayExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments));
6497 }
6498
6499 Expression *ArrayExp::semantic(Scope *sc)
6500 { Expression *e;
6501 Type *t1;
6502
6503 #if LOGSEMANTIC
6504 printf("ArrayExp::semantic('%s')\n", toChars());
6505 #endif
6506 UnaExp::semantic(sc);
6507 e1 = resolveProperties(sc, e1);
6508
6509 t1 = e1->type->toBasetype();
6510 if (t1->ty != Tclass && t1->ty != Tstruct)
6511 { // Convert to IndexExp
6512 if (arguments->dim != 1)
6513 error("only one index allowed to index %s", t1->toChars());
6514 e = new IndexExp(loc, e1, (Expression *)arguments->data[0]);
6515 return e->semantic(sc);
6516 }
6517
6518 // Run semantic() on each argument
6519 for (size_t i = 0; i < arguments->dim; i++)
6520 { e = (Expression *)arguments->data[i];
6521
6522 e = e->semantic(sc);
6523 if (!e->type)
6524 error("%s has no value", e->toChars());
6525 arguments->data[i] = (void *)e;
6526 }
6527
6528 expandTuples(arguments);
6529 assert(arguments && arguments->dim);
6530
6531 e = op_overload(sc);
6532 if (!e)
6533 { error("no [] operator overload for type %s", e1->type->toChars());
6534 e = e1;
6535 }
6536 return e;
6537 }
6538
6539
6540 Expression *ArrayExp::toLvalue(Scope *sc, Expression *e)
6541 {
6542 if (type && type->toBasetype()->ty == Tvoid)
6543 error("voids have no value");
6544 return this;
6545 }
6546
6547
6548 void ArrayExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6549 { int i;
6550
6551 expToCBuffer(buf, hgs, e1, PREC_primary);
6552 buf->writeByte('[');
6553 argsToCBuffer(buf, arguments, hgs);
6554 buf->writeByte(']');
6555 }
6556
6557 /************************* DotExp ***********************************/
6558
6559 DotExp::DotExp(Loc loc, Expression *e1, Expression *e2)
6560 : BinExp(loc, TOKdotexp, sizeof(DotExp), e1, e2)
6561 {
6562 }
6563
6564 Expression *DotExp::semantic(Scope *sc)
6565 {
6566 #if LOGSEMANTIC
6567 printf("DotExp::semantic('%s')\n", toChars());
6568 if (type) printf("\ttype = %s\n", type->toChars());
6569 #endif
6570 e1 = e1->semantic(sc);
6571 e2 = e2->semantic(sc);
6572 if (e2->op == TOKimport)
6573 {
6574 ScopeExp *se = (ScopeExp *)e2;
6575 TemplateDeclaration *td = se->sds->isTemplateDeclaration();
6576 if (td)
6577 { Expression *e = new DotTemplateExp(loc, e1, td);
6578 e = e->semantic(sc);
6579 return e;
6580 }
6581 }
6582 if (!type)
6583 type = e2->type;
6584 return this;
6585 }
6586
6587
6588 /************************* CommaExp ***********************************/
6589
6590 CommaExp::CommaExp(Loc loc, Expression *e1, Expression *e2)
6591 : BinExp(loc, TOKcomma, sizeof(CommaExp), e1, e2)
6592 {
6593 }
6594
6595 Expression *CommaExp::semantic(Scope *sc)
6596 {
6597 if (!type)
6598 { BinExp::semanticp(sc);
6599 type = e2->type;
6600 }
6601 return this;
6602 }
6603
6604 void CommaExp::checkEscape()
6605 {
6606 e2->checkEscape();
6607 }
6608
6609 Expression *CommaExp::toLvalue(Scope *sc, Expression *e)
6610 {
6611 e2 = e2->toLvalue(sc, NULL);
6612 return this;
6613 }
6614
6615 Expression *CommaExp::modifiableLvalue(Scope *sc, Expression *e)
6616 {
6617 e2 = e2->modifiableLvalue(sc, e);
6618 return this;
6619 }
6620
6621 int CommaExp::isBool(int result)
6622 {
6623 return e2->isBool(result);
6624 }
6625
6626 int CommaExp::checkSideEffect(int flag)
6627 {
6628 if (flag == 2)
6629 return e1->checkSideEffect(2) || e2->checkSideEffect(2);
6630 else
6631 {
6632 // Don't check e1 until we cast(void) the a,b code generation
6633 return e2->checkSideEffect(flag);
6634 }
6635 }
6636
6637 /************************** IndexExp **********************************/
6638
6639 // e1 [ e2 ]
6640
6641 IndexExp::IndexExp(Loc loc, Expression *e1, Expression *e2)
6642 : BinExp(loc, TOKindex, sizeof(IndexExp), e1, e2)
6643 {
6644 //printf("IndexExp::IndexExp('%s')\n", toChars());
6645 lengthVar = NULL;
6646 modifiable = 0; // assume it is an rvalue
6647 }
6648
6649 Expression *IndexExp::semantic(Scope *sc)
6650 { Expression *e;
6651 BinExp *b;
6652 UnaExp *u;
6653 Type *t1;
6654 ScopeDsymbol *sym;
6655
6656 #if LOGSEMANTIC
6657 printf("IndexExp::semantic('%s')\n", toChars());
6658 #endif
6659 if (type)
6660 return this;
6661 if (!e1->type)
6662 e1 = e1->semantic(sc);
6663 assert(e1->type); // semantic() should already be run on it
6664 e = this;
6665
6666 // Note that unlike C we do not implement the int[ptr]
6667
6668 t1 = e1->type->toBasetype();
6669
6670 if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple)
6671 { // Create scope for 'length' variable
6672 sym = new ArrayScopeSymbol(this);
6673 sym->loc = loc;
6674 sym->parent = sc->scopesym;
6675 sc = sc->push(sym);
6676 }
6677
6678 e2 = e2->semantic(sc);
6679 if (!e2->type)
6680 {
6681 error("%s has no value", e2->toChars());
6682 e2->type = Type::terror;
6683 }
6684 e2 = resolveProperties(sc, e2);
6685
6686 if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple)
6687 sc = sc->pop();
6688
6689 switch (t1->ty)
6690 {
6691 case Tpointer:
6692 case Tarray:
6693 e2 = e2->implicitCastTo(sc, Type::tsize_t);
6694 e->type = t1->next;
6695 break;
6696
6697 case Tsarray:
6698 {
6699 e2 = e2->implicitCastTo(sc, Type::tsize_t);
6700
6701 TypeSArray *tsa = (TypeSArray *)t1;
6702
6703 #if 0 // Don't do now, because it might be short-circuit evaluated
6704 // Do compile time array bounds checking if possible
6705 e2 = e2->optimize(WANTvalue);
6706 if (e2->op == TOKint64)
6707 {
6708 integer_t index = e2->toInteger();
6709 integer_t length = tsa->dim->toInteger();
6710 if (index < 0 || index >= length)
6711 error("array index [%lld] is outside array bounds [0 .. %lld]",
6712 index, length);
6713 }
6714 #endif
6715 e->type = t1->next;
6716 break;
6717 }
6718
6719 case Taarray:
6720 { TypeAArray *taa = (TypeAArray *)t1;
6721
6722 e2 = e2->implicitCastTo(sc, taa->index); // type checking
6723 e2 = e2->implicitCastTo(sc, taa->key); // actual argument type
6724 type = taa->next;
6725 break;
6726 }
6727
6728 case Ttuple:
6729 {
6730 e2 = e2->implicitCastTo(sc, Type::tsize_t);
6731 e2 = e2->optimize(WANTvalue);
6732 uinteger_t index = e2->toUInteger();
6733 size_t length;
6734 TupleExp *te;
6735 TypeTuple *tup;
6736
6737 if (e1->op == TOKtuple)
6738 { te = (TupleExp *)e1;
6739 length = te->exps->dim;
6740 }
6741 else if (e1->op == TOKtype)
6742 {
6743 tup = (TypeTuple *)t1;
6744 length = Argument::dim(tup->arguments);
6745 }
6746 else
6747 assert(0);
6748
6749 if (index < length)
6750 {
6751
6752 if (e1->op == TOKtuple)
6753 e = (Expression *)te->exps->data[(size_t)index];
6754 else
6755 e = new TypeExp(e1->loc, Argument::getNth(tup->arguments, (size_t)index)->type);
6756 }
6757 else
6758 {
6759 error("array index [%ju] is outside array bounds [0 .. %zu]",
6760 index, length);
6761 e = e1;
6762 }
6763 break;
6764 }
6765
6766 default:
6767 error("%s must be an array or pointer type, not %s",
6768 e1->toChars(), e1->type->toChars());
6769 type = Type::tint32;
6770 break;
6771 }
6772 return e;
6773 }
6774
6775 Expression *IndexExp::toLvalue(Scope *sc, Expression *e)
6776 {
6777 // if (type && type->toBasetype()->ty == Tvoid)
6778 // error("voids have no value");
6779 return this;
6780 }
6781
6782 Expression *IndexExp::modifiableLvalue(Scope *sc, Expression *e)
6783 {
6784 //printf("IndexExp::modifiableLvalue(%s)\n", toChars());
6785 modifiable = 1;
6786 if (e1->op == TOKstring)
6787 error("string literals are immutable");
6788 if (e1->type->toBasetype()->ty == Taarray)
6789 e1 = e1->modifiableLvalue(sc, e1);
6790 return toLvalue(sc, e);
6791 }
6792
6793 void IndexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6794 {
6795 expToCBuffer(buf, hgs, e1, PREC_primary);
6796 buf->writeByte('[');
6797 expToCBuffer(buf, hgs, e2, PREC_assign);
6798 buf->writeByte(']');
6799 }
6800
6801
6802 /************************* PostExp ***********************************/
6803
6804 PostExp::PostExp(enum TOK op, Loc loc, Expression *e)
6805 : BinExp(loc, op, sizeof(PostExp), e,
6806 new IntegerExp(loc, 1, Type::tint32))
6807 {
6808 }
6809
6810 Expression *PostExp::semantic(Scope *sc)
6811 { Expression *e = this;
6812
6813 if (!type)
6814 {
6815 BinExp::semantic(sc);
6816 e2 = resolveProperties(sc, e2);
6817
6818 e = op_overload(sc);
6819 if (e)
6820 return e;
6821
6822 e = this;
6823 e1 = e1->modifiableLvalue(sc, NULL);
6824 e1->checkScalar();
6825 e1->checkNoBool();
6826 if (e1->type->ty == Tpointer)
6827 e = scaleFactor(sc);
6828 else
6829 e2 = e2->castTo(sc, e1->type);
6830 e->type = e1->type;
6831 }
6832 return e;
6833 }
6834
6835 void PostExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
6836 {
6837 expToCBuffer(buf, hgs, e1, precedence[op]);
6838 buf->writestring((op == TOKplusplus) ? (char *)"++" : (char *)"--");
6839 }
6840
6841 /************************************************************/
6842
6843 /* Can be TOKconstruct too */
6844
6845 AssignExp::AssignExp(Loc loc, Expression *e1, Expression *e2)
6846 : BinExp(loc, TOKassign, sizeof(AssignExp), e1, e2)
6847 {
6848 ismemset = 0;
6849 }
6850
6851 Expression *AssignExp::semantic(Scope *sc)
6852 { Type *t1;
6853 Expression *e1old = e1;
6854
6855 #if LOGSEMANTIC
6856 printf("AssignExp::semantic('%s')\n", toChars());
6857 #endif
6858 //printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op));
6859
6860 /* Look for operator overloading of a[i]=value.
6861 * Do it before semantic() otherwise the a[i] will have been
6862 * converted to a.opIndex() already.
6863 */
6864 if (e1->op == TOKarray)
6865 { Type *t1;
6866 ArrayExp *ae = (ArrayExp *)e1;
6867 AggregateDeclaration *ad;
6868 Identifier *id = Id::index;
6869
6870 ae->e1 = ae->e1->semantic(sc);
6871 t1 = ae->e1->type->toBasetype();
6872 if (t1->ty == Tstruct)
6873 {
6874 ad = ((TypeStruct *)t1)->sym;
6875 goto L1;
6876 }
6877 else if (t1->ty == Tclass)
6878 {
6879 ad = ((TypeClass *)t1)->sym;
6880 L1:
6881 // Rewrite (a[i] = value) to (a.opIndexAssign(value, i))
6882 if (search_function(ad, Id::indexass))
6883 { Expression *e = new DotIdExp(loc, ae->e1, Id::indexass);
6884 Expressions *a = (Expressions *)ae->arguments->copy();
6885
6886 a->insert(0, e2);
6887 e = new CallExp(loc, e, a);
6888 e = e->semantic(sc);
6889 return e;
6890 }
6891 else
6892 {
6893 // Rewrite (a[i] = value) to (a.opIndex(i, value))
6894 if (search_function(ad, id))
6895 { Expression *e = new DotIdExp(loc, ae->e1, id);
6896
6897 if (1 || !global.params.useDeprecated)
6898 error("operator [] assignment overload with opIndex(i, value) illegal, use opIndexAssign(value, i)");
6899
6900 e = new CallExp(loc, e, (Expression *)ae->arguments->data[0], e2);
6901 e = e->semantic(sc);
6902 return e;
6903 }
6904 }
6905 }
6906 }
6907 /* Look for operator overloading of a[i..j]=value.
6908 * Do it before semantic() otherwise the a[i..j] will have been
6909 * converted to a.opSlice() already.
6910 */
6911 if (e1->op == TOKslice)
6912 { Type *t1;
6913 SliceExp *ae = (SliceExp *)e1;
6914 AggregateDeclaration *ad;
6915 Identifier *id = Id::index;
6916
6917 ae->e1 = ae->e1->semantic(sc);
6918 ae->e1 = resolveProperties(sc, ae->e1);
6919 t1 = ae->e1->type->toBasetype();
6920 if (t1->ty == Tstruct)
6921 {
6922 ad = ((TypeStruct *)t1)->sym;
6923 goto L2;
6924 }
6925 else if (t1->ty == Tclass)
6926 {
6927 ad = ((TypeClass *)t1)->sym;
6928 L2:
6929 // Rewrite (a[i..j] = value) to (a.opIndexAssign(value, i, j))
6930 if (search_function(ad, Id::sliceass))
6931 { Expression *e = new DotIdExp(loc, ae->e1, Id::sliceass);
6932 Expressions *a = new Expressions();
6933
6934 a->push(e2);
6935 if (ae->lwr)
6936 { a->push(ae->lwr);
6937 assert(ae->upr);
6938 a->push(ae->upr);
6939 }
6940 else
6941 assert(!ae->upr);
6942 e = new CallExp(loc, e, a);
6943 e = e->semantic(sc);
6944 return e;
6945 }
6946 }
6947 }
6948
6949 BinExp::semantic(sc);
6950 e2 = resolveProperties(sc, e2);
6951 assert(e1->type);
6952
6953 t1 = e1->type->toBasetype();
6954
6955 if (t1->ty == Tfunction)
6956 { // Rewrite f=value to f(value)
6957 Expression *e;
6958
6959 e = new CallExp(loc, e1, e2);
6960 e = e->semantic(sc);
6961 return e;
6962 }
6963
6964 /* If it is an assignment from a 'foreign' type,
6965 * check for operator overloading.
6966 */
6967 if (t1->ty == Tclass || t1->ty == Tstruct)
6968 {
6969 if (!e2->type->implicitConvTo(e1->type))
6970 {
6971 Expression *e = op_overload(sc);
6972 if (e)
6973 return e;
6974 }
6975 }
6976
6977 e2->rvalue();
6978
6979 if (e1->op == TOKarraylength)
6980 {
6981 // e1 is not an lvalue, but we let code generator handle it
6982 ArrayLengthExp *ale = (ArrayLengthExp *)e1;
6983
6984 ale->e1 = ale->e1->modifiableLvalue(sc, NULL);
6985 }
6986 else if (e1->op == TOKslice)
6987 ;
6988 else
6989 { // Try to do a decent error message with the expression
6990 // before it got constant folded
6991 e1 = e1->modifiableLvalue(sc, e1old);
6992 }
6993
6994 if (e1->op == TOKslice &&
6995 t1->next &&
6996 !(t1->next->equals(e2->type->next) /*||
6997 (t1->next->ty == Tchar && e2->op == TOKstring)*/)
6998 )
6999 { // memset
7000 e2 = e2->implicitCastTo(sc, t1->next);
7001 }
7002 #if 0
7003 else if (e1->op == TOKslice &&
7004 e2->op == TOKstring &&
7005 ((StringExp *)e2)->len == 1)
7006 { // memset
7007 e2 = e2->implicitCastTo(sc, e1->type->next);
7008 }
7009 #endif
7010 else if (t1->ty == Tsarray)
7011 {
7012 error("cannot assign to static array %s", e1->toChars());
7013 }
7014 else
7015 {
7016 e2 = e2->implicitCastTo(sc, e1->type);
7017 }
7018 type = e1->type;
7019 assert(type);
7020 return this;
7021 }
7022
7023 Expression *AssignExp::checkToBoolean()
7024 {
7025 // Things like:
7026 // if (a = b) ...
7027 // are usually mistakes.
7028
7029 error("'=' does not give a boolean result");
7030 return this;
7031 }
7032
7033 /************************************************************/
7034
7035 AddAssignExp::AddAssignExp(Loc loc, Expression *e1, Expression *e2)
7036 : BinExp(loc, TOKaddass, sizeof(AddAssignExp), e1, e2)
7037 {
7038 }
7039
7040 Expression *AddAssignExp::semantic(Scope *sc)
7041 { Expression *e;
7042
7043 if (type)
7044 return this;
7045
7046 BinExp::semantic(sc);
7047 e2 = resolveProperties(sc, e2);
7048
7049 e = op_overload(sc);
7050 if (e)
7051 return e;
7052
7053 e1 = e1->modifiableLvalue(sc, NULL);
7054
7055 Type *tb1 = e1->type->toBasetype();
7056 Type *tb2 = e2->type->toBasetype();
7057
7058 if ((tb1->ty == Tarray || tb1->ty == Tsarray) &&
7059 (tb2->ty == Tarray || tb2->ty == Tsarray) &&
7060 tb1->next->equals(tb2->next)
7061 )
7062 {
7063 type = e1->type;
7064 e = this;
7065 }
7066 else
7067 {
7068 e1->checkScalar();
7069 e1->checkNoBool();
7070 if (tb1->ty == Tpointer && tb2->isintegral())
7071 e = scaleFactor(sc);
7072 else if (tb1->ty == Tbit || tb1->ty == Tbool)
7073 {
7074 #if 0
7075 // Need to rethink this
7076 if (e1->op != TOKvar)
7077 { // Rewrite e1+=e2 to (v=&e1),*v=*v+e2
7078 VarDeclaration *v;
7079 Expression *ea;
7080 Expression *ex;
7081
7082 char name[6+6+1];
7083 Identifier *id;
7084 static int idn;
7085 sprintf(name, "__name%d", ++idn);
7086 id = Lexer::idPool(name);
7087
7088 v = new VarDeclaration(loc, tb1->pointerTo(), id, NULL);
7089 v->semantic(sc);
7090 if (!sc->insert(v))
7091 assert(0);
7092 v->parent = sc->func;
7093
7094 ea = new AddrExp(loc, e1);
7095 ea = new AssignExp(loc, new VarExp(loc, v), ea);
7096
7097 ex = new VarExp(loc, v);
7098 ex = new PtrExp(loc, ex);
7099 e = new AddExp(loc, ex, e2);
7100 e = new CastExp(loc, e, e1->type);
7101 e = new AssignExp(loc, ex->syntaxCopy(), e);
7102
7103 e = new CommaExp(loc, ea, e);
7104 }
7105 else
7106 #endif
7107 { // Rewrite e1+=e2 to e1=e1+e2
7108 // BUG: doesn't account for side effects in e1
7109 // BUG: other assignment operators for bits aren't handled at all
7110 e = new AddExp(loc, e1, e2);
7111 e = new CastExp(loc, e, e1->type);
7112 e = new AssignExp(loc, e1->syntaxCopy(), e);
7113 }
7114 e = e->semantic(sc);
7115 }
7116 else
7117 {
7118 type = e1->type;
7119 typeCombine(sc);
7120 e1->checkArithmetic();
7121 e2->checkArithmetic();
7122 if (type->isreal() || type->isimaginary())
7123 {
7124 assert(global.errors || e2->type->isfloating());
7125 e2 = e2->castTo(sc, e1->type);
7126 }
7127 e = this;
7128 }
7129 }
7130 return e;
7131 }
7132
7133 /************************************************************/
7134
7135 MinAssignExp::MinAssignExp(Loc loc, Expression *e1, Expression *e2)
7136 : BinExp(loc, TOKminass, sizeof(MinAssignExp), e1, e2)
7137 {
7138 }
7139
7140 Expression *MinAssignExp::semantic(Scope *sc)
7141 { Expression *e;
7142
7143 if (type)
7144 return this;
7145
7146 BinExp::semantic(sc);
7147 e2 = resolveProperties(sc, e2);
7148
7149 e = op_overload(sc);
7150 if (e)
7151 return e;
7152
7153 e1 = e1->modifiableLvalue(sc, NULL);
7154 e1->checkScalar();
7155 e1->checkNoBool();
7156 if (e1->type->ty == Tpointer && e2->type->isintegral())
7157 e = scaleFactor(sc);
7158 else
7159 {
7160 type = e1->type;
7161 typeCombine(sc);
7162 e1->checkArithmetic();
7163 e2->checkArithmetic();
7164 if (type->isreal() || type->isimaginary())
7165 {
7166 assert(e2->type->isfloating());
7167 e2 = e2->castTo(sc, e1->type);
7168 }
7169 e = this;
7170 }
7171 return e;
7172 }
7173
7174 /************************************************************/
7175
7176 CatAssignExp::CatAssignExp(Loc loc, Expression *e1, Expression *e2)
7177 : BinExp(loc, TOKcatass, sizeof(CatAssignExp), e1, e2)
7178 {
7179 }
7180
7181 Expression *CatAssignExp::semantic(Scope *sc)
7182 { Expression *e;
7183
7184 BinExp::semantic(sc);
7185 e2 = resolveProperties(sc, e2);
7186
7187 e = op_overload(sc);
7188 if (e)
7189 return e;
7190
7191 if (e1->op == TOKslice)
7192 { SliceExp *se = (SliceExp *)e1;
7193
7194 if (se->e1->type->toBasetype()->ty == Tsarray)
7195 error("cannot append to static array %s", se->e1->type->toChars());
7196 }
7197
7198 e1 = e1->modifiableLvalue(sc, NULL);
7199
7200 Type *tb1 = e1->type->toBasetype();
7201 Type *tb2 = e2->type->toBasetype();
7202
7203 if ((tb1->ty == Tarray) &&
7204 (tb2->ty == Tarray || tb2->ty == Tsarray) &&
7205 e2->implicitConvTo(e1->type)
7206 //e1->type->next->equals(e2->type->next)
7207 )
7208 { // Append array
7209 e2 = e2->castTo(sc, e1->type);
7210 type = e1->type;
7211 e = this;
7212 }
7213 else if ((tb1->ty == Tarray) &&
7214 e2->implicitConvTo(tb1->next)
7215 )
7216 { // Append element
7217 e2 = e2->castTo(sc, tb1->next);
7218 type = e1->type;
7219 e = this;
7220 }
7221 else
7222 {
7223 error("cannot append type %s to type %s", tb2->toChars(), tb1->toChars());
7224 type = Type::tint32;
7225 e = this;
7226 }
7227 return e;
7228 }
7229
7230 /************************************************************/
7231
7232 MulAssignExp::MulAssignExp(Loc loc, Expression *e1, Expression *e2)
7233 : BinExp(loc, TOKmulass, sizeof(MulAssignExp), e1, e2)
7234 {
7235 }
7236
7237 Expression *MulAssignExp::semantic(Scope *sc)
7238 { Expression *e;
7239
7240 BinExp::semantic(sc);
7241 e2 = resolveProperties(sc, e2);
7242
7243 e = op_overload(sc);
7244 if (e)
7245 return e;
7246
7247 e1 = e1->modifiableLvalue(sc, NULL);
7248 e1->checkScalar();
7249 e1->checkNoBool();
7250 type = e1->type;
7251 typeCombine(sc);
7252 e1->checkArithmetic();
7253 e2->checkArithmetic();
7254 if (e2->type->isfloating())
7255 { Type *t1;
7256 Type *t2;
7257
7258 t1 = e1->type;
7259 t2 = e2->type;
7260 if (t1->isreal())
7261 {
7262 if (t2->isimaginary() || t2->iscomplex())
7263 {
7264 e2 = e2->castTo(sc, t1);
7265 }
7266 }
7267 else if (t1->isimaginary())
7268 {
7269 if (t2->isimaginary() || t2->iscomplex())
7270 {
7271 switch (t1->ty)
7272 {
7273 case Timaginary32: t2 = Type::tfloat32; break;
7274 case Timaginary64: t2 = Type::tfloat64; break;
7275 case Timaginary80: t2 = Type::tfloat80; break;
7276 default:
7277 assert(0);
7278 }
7279 e2 = e2->castTo(sc, t2);
7280 }
7281 }
7282 }
7283 return this;
7284 }
7285
7286 /************************************************************/
7287
7288 DivAssignExp::DivAssignExp(Loc loc, Expression *e1, Expression *e2)
7289 : BinExp(loc, TOKdivass, sizeof(DivAssignExp), e1, e2)
7290 {
7291 }
7292
7293 Expression *DivAssignExp::semantic(Scope *sc)
7294 { Expression *e;
7295
7296 BinExp::semantic(sc);
7297 e2 = resolveProperties(sc, e2);
7298
7299 e = op_overload(sc);
7300 if (e)
7301 return e;
7302
7303 e1 = e1->modifiableLvalue(sc, NULL);
7304 e1->checkScalar();
7305 e1->checkNoBool();
7306 type = e1->type;
7307 typeCombine(sc);
7308 e1->checkArithmetic();
7309 e2->checkArithmetic();
7310 if (e2->type->isimaginary())
7311 { Type *t1;
7312 Type *t2;
7313
7314 t1 = e1->type;
7315 if (t1->isreal())
7316 { // x/iv = i(-x/v)
7317 // Therefore, the result is 0
7318 e2 = new CommaExp(loc, e2, new RealExp(loc, 0, t1));
7319 e2->type = t1;
7320 e = new AssignExp(loc, e1, e2);
7321 e->type = t1;
7322 return e;
7323 }
7324 else if (t1->isimaginary())
7325 { Expression *e;
7326
7327 switch (t1->ty)
7328 {
7329 case Timaginary32: t2 = Type::tfloat32; break;
7330 case Timaginary64: t2 = Type::tfloat64; break;
7331 case Timaginary80: t2 = Type::tfloat80; break;
7332 default:
7333 assert(0);
7334 }
7335 e2 = e2->castTo(sc, t2);
7336 e = new AssignExp(loc, e1, e2);
7337 e->type = t1;
7338 return e;
7339 }
7340 }
7341 return this;
7342 }
7343
7344 /************************************************************/
7345
7346 ModAssignExp::ModAssignExp(Loc loc, Expression *e1, Expression *e2)
7347 : BinExp(loc, TOKmodass, sizeof(ModAssignExp), e1, e2)
7348 {
7349 }
7350
7351 Expression *ModAssignExp::semantic(Scope *sc)
7352 {
7353 return commonSemanticAssign(sc);
7354 }
7355
7356 /************************************************************/
7357
7358 ShlAssignExp::ShlAssignExp(Loc loc, Expression *e1, Expression *e2)
7359 : BinExp(loc, TOKshlass, sizeof(ShlAssignExp), e1, e2)
7360 {
7361 }
7362
7363 Expression *ShlAssignExp::semantic(Scope *sc)
7364 { Expression *e;
7365
7366 //printf("ShlAssignExp::semantic()\n");
7367 BinExp::semantic(sc);
7368 e2 = resolveProperties(sc, e2);
7369
7370 e = op_overload(sc);
7371 if (e)
7372 return e;
7373
7374 e1 = e1->modifiableLvalue(sc, NULL);
7375 e1->checkScalar();
7376 e1->checkNoBool();
7377 type = e1->type;
7378 typeCombine(sc);
7379 e1->checkIntegral();
7380 e2 = e2->checkIntegral();
7381 e2 = e2->castTo(sc, Type::tshiftcnt);
7382 return this;
7383 }
7384
7385 /************************************************************/
7386
7387 ShrAssignExp::ShrAssignExp(Loc loc, Expression *e1, Expression *e2)
7388 : BinExp(loc, TOKshrass, sizeof(ShrAssignExp), e1, e2)
7389 {
7390 }
7391
7392 Expression *ShrAssignExp::semantic(Scope *sc)
7393 { Expression *e;
7394
7395 BinExp::semantic(sc);
7396 e2 = resolveProperties(sc, e2);
7397
7398 e = op_overload(sc);
7399 if (e)
7400 return e;
7401
7402 e1 = e1->modifiableLvalue(sc, NULL);
7403 e1->checkScalar();
7404 e1->checkNoBool();
7405 type = e1->type;
7406 typeCombine(sc);
7407 e1->checkIntegral();
7408 e2 = e2->checkIntegral();
7409 e2 = e2->castTo(sc, Type::tshiftcnt);
7410 return this;
7411 }
7412
7413 /************************************************************/
7414
7415 UshrAssignExp::UshrAssignExp(Loc loc, Expression *e1, Expression *e2)
7416 : BinExp(loc, TOKushrass, sizeof(UshrAssignExp), e1, e2)
7417 {
7418 }
7419
7420 Expression *UshrAssignExp::semantic(Scope *sc)
7421 { Expression *e;
7422
7423 BinExp::semantic(sc);
7424 e2 = resolveProperties(sc, e2);
7425
7426 e = op_overload(sc);
7427 if (e)
7428 return e;
7429
7430 e1 = e1->modifiableLvalue(sc, NULL);
7431 e1->checkScalar();
7432 e1->checkNoBool();
7433 type = e1->type;
7434 typeCombine(sc);
7435 e1->checkIntegral();
7436 e2 = e2->checkIntegral();
7437 e2 = e2->castTo(sc, Type::tshiftcnt);
7438 return this;
7439 }
7440
7441 /************************************************************/
7442
7443 AndAssignExp::AndAssignExp(Loc loc, Expression *e1, Expression *e2)
7444 : BinExp(loc, TOKandass, sizeof(AndAssignExp), e1, e2)
7445 {
7446 }
7447
7448 Expression *AndAssignExp::semantic(Scope *sc)
7449 {
7450 return commonSemanticAssignIntegral(sc);
7451 }
7452
7453 /************************************************************/
7454
7455 OrAssignExp::OrAssignExp(Loc loc, Expression *e1, Expression *e2)
7456 : BinExp(loc, TOKorass, sizeof(OrAssignExp), e1, e2)
7457 {
7458 }
7459
7460 Expression *OrAssignExp::semantic(Scope *sc)
7461 {
7462 return commonSemanticAssignIntegral(sc);
7463 }
7464
7465 /************************************************************/
7466
7467 XorAssignExp::XorAssignExp(Loc loc, Expression *e1, Expression *e2)
7468 : BinExp(loc, TOKxorass, sizeof(XorAssignExp), e1, e2)
7469 {
7470 }
7471
7472 Expression *XorAssignExp::semantic(Scope *sc)
7473 {
7474 return commonSemanticAssignIntegral(sc);
7475 }
7476
7477 /************************* AddExp *****************************/
7478
7479 AddExp::AddExp(Loc loc, Expression *e1, Expression *e2)
7480 : BinExp(loc, TOKadd, sizeof(AddExp), e1, e2)
7481 {
7482 }
7483
7484 Expression *AddExp::semantic(Scope *sc)
7485 { Expression *e;
7486
7487 #if LOGSEMANTIC
7488 printf("AddExp::semantic('%s')\n", toChars());
7489 #endif
7490 if (!type)
7491 {
7492 BinExp::semanticp(sc);
7493
7494 e = op_overload(sc);
7495 if (e)
7496 return e;
7497
7498 Type *tb1 = e1->type->toBasetype();
7499 Type *tb2 = e2->type->toBasetype();
7500
7501 if ((tb1->ty == Tarray || tb1->ty == Tsarray) &&
7502 (tb2->ty == Tarray || tb2->ty == Tsarray) &&
7503 tb1->next->equals(tb2->next)
7504 )
7505 {
7506 type = e1->type;
7507 e = this;
7508 }
7509 else if (tb1->ty == Tpointer && e2->type->isintegral() ||
7510 tb2->ty == Tpointer && e1->type->isintegral())
7511 e = scaleFactor(sc);
7512 else if (tb1->ty == Tpointer && tb2->ty == Tpointer)
7513 {
7514 incompatibleTypes();
7515 type = e1->type;
7516 e = this;
7517 }
7518 else
7519 {
7520 typeCombine(sc);
7521 if ((e1->type->isreal() && e2->type->isimaginary()) ||
7522 (e1->type->isimaginary() && e2->type->isreal()))
7523 {
7524 switch (type->toBasetype()->ty)
7525 {
7526 case Tfloat32:
7527 case Timaginary32:
7528 type = Type::tcomplex32;
7529 break;
7530
7531 case Tfloat64:
7532 case Timaginary64:
7533 type = Type::tcomplex64;
7534 break;
7535
7536 case Tfloat80:
7537 case Timaginary80:
7538 type = Type::tcomplex80;
7539 break;
7540
7541 default:
7542 assert(0);
7543 }
7544 }
7545 e = this;
7546 }
7547 return e;
7548 }
7549 return this;
7550 }
7551
7552 /************************************************************/
7553
7554 MinExp::MinExp(Loc loc, Expression *e1, Expression *e2)
7555 : BinExp(loc, TOKmin, sizeof(MinExp), e1, e2)
7556 {
7557 }
7558
7559 Expression *MinExp::semantic(Scope *sc)
7560 { Expression *e;
7561 Type *t1;
7562 Type *t2;
7563
7564 #if LOGSEMANTIC
7565 printf("MinExp::semantic('%s')\n", toChars());
7566 #endif
7567 if (type)
7568 return this;
7569
7570 BinExp::semanticp(sc);
7571
7572 e = op_overload(sc);
7573 if (e)
7574 return e;
7575
7576 e = this;
7577 t1 = e1->type->toBasetype();
7578 t2 = e2->type->toBasetype();
7579 if (t1->ty == Tpointer)
7580 {
7581 if (t2->ty == Tpointer)
7582 { // Need to divide the result by the stride
7583 // Replace (ptr - ptr) with (ptr - ptr) / stride
7584 d_int64 stride;
7585 Expression *e;
7586
7587 typeCombine(sc); // make sure pointer types are compatible
7588 type = Type::tptrdiff_t;
7589 stride = t2->next->size();
7590 e = new DivExp(loc, this, new IntegerExp(0, stride, Type::tptrdiff_t));
7591 e->type = Type::tptrdiff_t;
7592 return e;
7593 }
7594 else if (t2->isintegral())
7595 e = scaleFactor(sc);
7596 else
7597 { error("incompatible types for -");
7598 return new IntegerExp(0);
7599 }
7600 }
7601 else if (t2->ty == Tpointer)
7602 {
7603 type = e2->type;
7604 error("can't subtract pointer from %s", e1->type->toChars());
7605 return new IntegerExp(0);
7606 }
7607 else
7608 {
7609 typeCombine(sc);
7610 t1 = e1->type->toBasetype();
7611 t2 = e2->type->toBasetype();
7612 if ((t1->isreal() && t2->isimaginary()) ||
7613 (t1->isimaginary() && t2->isreal()))
7614 {
7615 switch (type->ty)
7616 {
7617 case Tfloat32:
7618 case Timaginary32:
7619 type = Type::tcomplex32;
7620 break;
7621
7622 case Tfloat64:
7623 case Timaginary64:
7624 type = Type::tcomplex64;
7625 break;
7626
7627 case Tfloat80:
7628 case Timaginary80:
7629 type = Type::tcomplex80;
7630 break;
7631
7632 default:
7633 assert(0);
7634 }
7635 }
7636 }
7637 return e;
7638 }
7639
7640 /************************* CatExp *****************************/
7641
7642 CatExp::CatExp(Loc loc, Expression *e1, Expression *e2)
7643 : BinExp(loc, TOKcat, sizeof(CatExp), e1, e2)
7644 {
7645 }
7646
7647 Expression *CatExp::semantic(Scope *sc)
7648 { Expression *e;
7649
7650 //printf("CatExp::semantic() %s\n", toChars());
7651 if (!type)
7652 {
7653 BinExp::semanticp(sc);
7654 e = op_overload(sc);
7655 if (e)
7656 return e;
7657
7658 Type *tb1 = e1->type->toBasetype();
7659 Type *tb2 = e2->type->toBasetype();
7660
7661
7662 /* BUG: Should handle things like:
7663 * char c;
7664 * c ~ ' '
7665 * ' ' ~ c;
7666 */
7667
7668 #if 0
7669 e1->type->print();
7670 e2->type->print();
7671 #endif
7672 if ((tb1->ty == Tsarray || tb1->ty == Tarray) &&
7673 e2->type->equals(tb1->next))
7674 {
7675 type = tb1->next->arrayOf();
7676 if (tb2->ty == Tarray)
7677 { // Make e2 into [e2]
7678 e2 = new ArrayLiteralExp(e2->loc, e2);
7679 e2->type = type;
7680 }
7681 return this;
7682 }
7683 else if ((tb2->ty == Tsarray || tb2->ty == Tarray) &&
7684 e1->type->equals(tb2->next))
7685 {
7686 type = tb2->next->arrayOf();
7687 if (tb1->ty == Tarray)
7688 { // Make e1 into [e1]
7689 e1 = new ArrayLiteralExp(e1->loc, e1);
7690 e1->type = type;
7691 }
7692 return this;
7693 }
7694
7695 typeCombine(sc);
7696
7697 if (type->toBasetype()->ty == Tsarray)
7698 type = type->toBasetype()->next->arrayOf();
7699 #if 0
7700 e1->type->print();
7701 e2->type->print();
7702 type->print();
7703 print();
7704 #endif
7705 if (e1->op == TOKstring && e2->op == TOKstring)
7706 e = optimize(WANTvalue);
7707 else if (e1->type->equals(e2->type) &&
7708 (e1->type->toBasetype()->ty == Tarray ||
7709 e1->type->toBasetype()->ty == Tsarray))
7710 {
7711 e = this;
7712 }
7713 else
7714 {
7715 error("Can only concatenate arrays, not (%s ~ %s)",
7716 e1->type->toChars(), e2->type->toChars());
7717 type = Type::tint32;
7718 e = this;
7719 }
7720 e->type = e->type->semantic(loc, sc);
7721 return e;
7722 }
7723 return this;
7724 }
7725
7726 /************************************************************/
7727
7728 MulExp::MulExp(Loc loc, Expression *e1, Expression *e2)
7729 : BinExp(loc, TOKmul, sizeof(MulExp), e1, e2)
7730 {
7731 }
7732
7733 Expression *MulExp::semantic(Scope *sc)
7734 { Expression *e;
7735
7736 #if 0
7737 printf("MulExp::semantic() %s\n", toChars());
7738 #endif
7739 if (type)
7740 {
7741 return this;
7742 }
7743
7744 BinExp::semanticp(sc);
7745 e = op_overload(sc);
7746 if (e)
7747 return e;
7748
7749 typeCombine(sc);
7750 e1->checkArithmetic();
7751 e2->checkArithmetic();
7752 if (type->isfloating())
7753 { Type *t1 = e1->type;
7754 Type *t2 = e2->type;
7755
7756 if (t1->isreal())
7757 {
7758 type = t2;
7759 }
7760 else if (t2->isreal())
7761 {
7762 type = t1;
7763 }
7764 else if (t1->isimaginary())
7765 {
7766 if (t2->isimaginary())
7767 { Expression *e;
7768
7769 switch (t1->ty)
7770 {
7771 case Timaginary32: type = Type::tfloat32; break;
7772 case Timaginary64: type = Type::tfloat64; break;
7773 case Timaginary80: type = Type::tfloat80; break;
7774 default: assert(0);
7775 }
7776
7777 // iy * iv = -yv
7778 e1->type = type;
7779 e2->type = type;
7780 e = new NegExp(loc, this);
7781 e = e->semantic(sc);
7782 return e;
7783 }
7784 else
7785 type = t2; // t2 is complex
7786 }
7787 else if (t2->isimaginary())
7788 {
7789 type = t1; // t1 is complex
7790 }
7791 }
7792 return this;
7793 }
7794
7795 /************************************************************/
7796
7797 DivExp::DivExp(Loc loc, Expression *e1, Expression *e2)
7798 : BinExp(loc, TOKdiv, sizeof(DivExp), e1, e2)
7799 {
7800 }
7801
7802 Expression *DivExp::semantic(Scope *sc)
7803 { Expression *e;
7804
7805 if (type)
7806 return this;
7807
7808 BinExp::semanticp(sc);
7809 e = op_overload(sc);
7810 if (e)
7811 return e;
7812
7813 typeCombine(sc);
7814 e1->checkArithmetic();
7815 e2->checkArithmetic();
7816 if (type->isfloating())
7817 { Type *t1 = e1->type;
7818 Type *t2 = e2->type;
7819
7820 if (t1->isreal())
7821 {
7822 type = t2;
7823 if (t2->isimaginary())
7824 { Expression *e;
7825
7826 // x/iv = i(-x/v)
7827 e2->type = t1;
7828 e = new NegExp(loc, this);
7829 e = e->semantic(sc);
7830 return e;
7831 }
7832 }
7833 else if (t2->isreal())
7834 {
7835 type = t1;
7836 }
7837 else if (t1->isimaginary())
7838 {
7839 if (t2->isimaginary())
7840 {
7841 switch (t1->ty)
7842 {
7843 case Timaginary32: type = Type::tfloat32; break;
7844 case Timaginary64: type = Type::tfloat64; break;
7845 case Timaginary80: type = Type::tfloat80; break;
7846 default: assert(0);
7847 }
7848 }
7849 else
7850 type = t2; // t2 is complex
7851 }
7852 else if (t2->isimaginary())
7853 {
7854 type = t1; // t1 is complex
7855 }
7856 }
7857 return this;
7858 }
7859
7860 /************************************************************/
7861
7862 ModExp::ModExp(Loc loc, Expression *e1, Expression *e2)
7863 : BinExp(loc, TOKmod, sizeof(ModExp), e1, e2)
7864 {
7865 }
7866
7867 Expression *ModExp::semantic(Scope *sc)
7868 { Expression *e;
7869
7870 if (type)
7871 return this;
7872
7873 BinExp::semanticp(sc);
7874 e = op_overload(sc);
7875 if (e)
7876 return e;
7877
7878 typeCombine(sc);
7879 e1->checkArithmetic();
7880 e2->checkArithmetic();
7881 if (type->isfloating())
7882 { type = e1->type;
7883 if (e2->type->iscomplex())
7884 { error("cannot perform modulo complex arithmetic");
7885 return new IntegerExp(0);
7886 }
7887 }
7888 return this;
7889 }
7890
7891 /************************************************************/
7892
7893 ShlExp::ShlExp(Loc loc, Expression *e1, Expression *e2)
7894 : BinExp(loc, TOKshl, sizeof(ShlExp), e1, e2)
7895 {
7896 }
7897
7898 Expression *ShlExp::semantic(Scope *sc)
7899 { Expression *e;
7900
7901 //printf("ShlExp::semantic(), type = %p\n", type);
7902 if (!type)
7903 { BinExp::semanticp(sc);
7904 e = op_overload(sc);
7905 if (e)
7906 return e;
7907 e1 = e1->checkIntegral();
7908 e2 = e2->checkIntegral();
7909 e1 = e1->integralPromotions(sc);
7910 e2 = e2->castTo(sc, Type::tshiftcnt);
7911 type = e1->type;
7912 }
7913 return this;
7914 }
7915
7916 /************************************************************/
7917
7918 ShrExp::ShrExp(Loc loc, Expression *e1, Expression *e2)
7919 : BinExp(loc, TOKshr, sizeof(ShrExp), e1, e2)
7920 {
7921 }
7922
7923 Expression *ShrExp::semantic(Scope *sc)
7924 { Expression *e;
7925
7926 if (!type)
7927 { BinExp::semanticp(sc);
7928 e = op_overload(sc);
7929 if (e)
7930 return e;
7931 e1 = e1->checkIntegral();
7932 e2 = e2->checkIntegral();
7933 e1 = e1->integralPromotions(sc);
7934 e2 = e2->castTo(sc, Type::tshiftcnt);
7935 type = e1->type;
7936 }
7937 return this;
7938 }
7939
7940 /************************************************************/
7941
7942 UshrExp::UshrExp(Loc loc, Expression *e1, Expression *e2)
7943 : BinExp(loc, TOKushr, sizeof(UshrExp), e1, e2)
7944 {
7945 }
7946
7947 Expression *UshrExp::semantic(Scope *sc)
7948 { Expression *e;
7949
7950 if (!type)
7951 { BinExp::semanticp(sc);
7952 e = op_overload(sc);
7953 if (e)
7954 return e;
7955 e1 = e1->checkIntegral();
7956 e2 = e2->checkIntegral();
7957 e1 = e1->integralPromotions(sc);
7958 e2 = e2->castTo(sc, Type::tshiftcnt);
7959 type = e1->type;
7960 }
7961 return this;
7962 }
7963
7964 /************************************************************/
7965
7966 AndExp::AndExp(Loc loc, Expression *e1, Expression *e2)
7967 : BinExp(loc, TOKand, sizeof(AndExp), e1, e2)
7968 {
7969 }
7970
7971 Expression *AndExp::semantic(Scope *sc)
7972 { Expression *e;
7973
7974 if (!type)
7975 { BinExp::semanticp(sc);
7976 e = op_overload(sc);
7977 if (e)
7978 return e;
7979 if (e1->type->toBasetype()->ty == Tbool &&
7980 e2->type->toBasetype()->ty == Tbool)
7981 {
7982 type = e1->type;
7983 e = this;
7984 }
7985 else
7986 {
7987 typeCombine(sc);
7988 e1->checkIntegral();
7989 e2->checkIntegral();
7990 }
7991 }
7992 return this;
7993 }
7994
7995 /************************************************************/
7996
7997 OrExp::OrExp(Loc loc, Expression *e1, Expression *e2)
7998 : BinExp(loc, TOKor, sizeof(OrExp), e1, e2)
7999 {
8000 }
8001
8002 Expression *OrExp::semantic(Scope *sc)
8003 { Expression *e;
8004
8005 if (!type)
8006 { BinExp::semanticp(sc);
8007 e = op_overload(sc);
8008 if (e)
8009 return e;
8010 if (e1->type->toBasetype()->ty == Tbool &&
8011 e2->type->toBasetype()->ty == Tbool)
8012 {
8013 type = e1->type;
8014 e = this;
8015 }
8016 else
8017 {
8018 typeCombine(sc);
8019 e1->checkIntegral();
8020 e2->checkIntegral();
8021 }
8022 }
8023 return this;
8024 }
8025
8026 /************************************************************/
8027
8028 XorExp::XorExp(Loc loc, Expression *e1, Expression *e2)
8029 : BinExp(loc, TOKxor, sizeof(XorExp), e1, e2)
8030 {
8031 }
8032
8033 Expression *XorExp::semantic(Scope *sc)
8034 { Expression *e;
8035
8036 if (!type)
8037 { BinExp::semanticp(sc);
8038 e = op_overload(sc);
8039 if (e)
8040 return e;
8041 if (e1->type->toBasetype()->ty == Tbool &&
8042 e2->type->toBasetype()->ty == Tbool)
8043 {
8044 type = e1->type;
8045 e = this;
8046 }
8047 else
8048 {
8049 typeCombine(sc);
8050 e1->checkIntegral();
8051 e2->checkIntegral();
8052 }
8053 }
8054 return this;
8055 }
8056
8057
8058 /************************************************************/
8059
8060 OrOrExp::OrOrExp(Loc loc, Expression *e1, Expression *e2)
8061 : BinExp(loc, TOKoror, sizeof(OrOrExp), e1, e2)
8062 {
8063 }
8064
8065 Expression *OrOrExp::semantic(Scope *sc)
8066 {
8067 unsigned cs1;
8068
8069 // same as for AndAnd
8070 e1 = e1->semantic(sc);
8071 e1 = resolveProperties(sc, e1);
8072 e1 = e1->checkToPointer();
8073 e1 = e1->checkToBoolean();
8074 cs1 = sc->callSuper;
8075
8076 if (sc->flags & SCOPEstaticif)
8077 {
8078 /* If in static if, don't evaluate e2 if we don't have to.
8079 */
8080 e1 = e1->optimize(WANTflags);
8081 if (e1->isBool(TRUE))
8082 {
8083 return new IntegerExp(loc, 1, Type::tboolean);
8084 }
8085 }
8086
8087 e2 = e2->semantic(sc);
8088 sc->mergeCallSuper(loc, cs1);
8089 e2 = resolveProperties(sc, e2);
8090 e2 = e2->checkToPointer();
8091
8092 type = Type::tboolean;
8093 if (e1->type->ty == Tvoid)
8094 type = Type::tvoid;
8095 if (e2->op == TOKtype || e2->op == TOKimport)
8096 error("%s is not an expression", e2->toChars());
8097 return this;
8098 }
8099
8100 Expression *OrOrExp::checkToBoolean()
8101 {
8102 e2 = e2->checkToBoolean();
8103 return this;
8104 }
8105
8106 int OrOrExp::isBit()
8107 {
8108 return TRUE;
8109 }
8110
8111 int OrOrExp::checkSideEffect(int flag)
8112 {
8113 if (flag == 2)
8114 {
8115 return e1->checkSideEffect(2) || e2->checkSideEffect(2);
8116 }
8117 else
8118 { e1->checkSideEffect(1);
8119 return e2->checkSideEffect(flag);
8120 }
8121 }
8122
8123 /************************************************************/
8124
8125 AndAndExp::AndAndExp(Loc loc, Expression *e1, Expression *e2)
8126 : BinExp(loc, TOKandand, sizeof(AndAndExp), e1, e2)
8127 {
8128 }
8129
8130 Expression *AndAndExp::semantic(Scope *sc)
8131 {
8132 unsigned cs1;
8133
8134 // same as for OrOr
8135 e1 = e1->semantic(sc);
8136 e1 = resolveProperties(sc, e1);
8137 e1 = e1->checkToPointer();
8138 e1 = e1->checkToBoolean();
8139 cs1 = sc->callSuper;
8140
8141 if (sc->flags & SCOPEstaticif)
8142 {
8143 /* If in static if, don't evaluate e2 if we don't have to.
8144 */
8145 e1 = e1->optimize(WANTflags);
8146 if (e1->isBool(FALSE))
8147 {
8148 return new IntegerExp(loc, 0, Type::tboolean);
8149 }
8150 }
8151
8152 e2 = e2->semantic(sc);
8153 sc->mergeCallSuper(loc, cs1);
8154 e2 = resolveProperties(sc, e2);
8155 e2 = e2->checkToPointer();
8156
8157 type = Type::tboolean;
8158 if (e1->type->ty == Tvoid)
8159 type = Type::tvoid;
8160 if (e2->op == TOKtype || e2->op == TOKimport)
8161 error("%s is not an expression", e2->toChars());
8162 return this;
8163 }
8164
8165 Expression *AndAndExp::checkToBoolean()
8166 {
8167 e2 = e2->checkToBoolean();
8168 return this;
8169 }
8170
8171 int AndAndExp::isBit()
8172 {
8173 return TRUE;
8174 }
8175
8176 int AndAndExp::checkSideEffect(int flag)
8177 {
8178 if (flag == 2)
8179 {
8180 return e1->checkSideEffect(2) || e2->checkSideEffect(2);
8181 }
8182 else
8183 {
8184 e1->checkSideEffect(1);
8185 return e2->checkSideEffect(flag);
8186 }
8187 }
8188
8189 /************************************************************/
8190
8191 InExp::InExp(Loc loc, Expression *e1, Expression *e2)
8192 : BinExp(loc, TOKin, sizeof(InExp), e1, e2)
8193 {
8194 }
8195
8196 Expression *InExp::semantic(Scope *sc)
8197 { Expression *e;
8198
8199 if (type)
8200 return this;
8201
8202 BinExp::semanticp(sc);
8203 e = op_overload(sc);
8204 if (e)
8205 return e;
8206
8207 //type = Type::tboolean;
8208 Type *t2b = e2->type->toBasetype();
8209 if (t2b->ty != Taarray)
8210 {
8211 error("rvalue of in expression must be an associative array, not %s", e2->type->toChars());
8212 type = Type::terror;
8213 }
8214 else
8215 {
8216 TypeAArray *ta = (TypeAArray *)t2b;
8217
8218 // Convert key to type of key
8219 e1 = e1->implicitCastTo(sc, ta->index);
8220
8221 // Return type is pointer to value
8222 type = ta->next->pointerTo();
8223 }
8224 return this;
8225 }
8226
8227 int InExp::isBit()
8228 {
8229 return FALSE;
8230 }
8231
8232
8233 /************************************************************/
8234
8235 /* This deletes the key e1 from the associative array e2
8236 */
8237
8238 RemoveExp::RemoveExp(Loc loc, Expression *e1, Expression *e2)
8239 : BinExp(loc, TOKremove, sizeof(RemoveExp), e1, e2)
8240 {
8241 type = Type::tvoid;
8242 }
8243
8244 /************************************************************/
8245
8246 CmpExp::CmpExp(enum TOK op, Loc loc, Expression *e1, Expression *e2)
8247 : BinExp(loc, op, sizeof(CmpExp), e1, e2)
8248 {
8249 }
8250
8251 Expression *CmpExp::semantic(Scope *sc)
8252 { Expression *e;
8253 Type *t1;
8254 Type *t2;
8255
8256 #if LOGSEMANTIC
8257 printf("CmpExp::semantic('%s')\n", toChars());
8258 #endif
8259 if (type)
8260 return this;
8261
8262 BinExp::semanticp(sc);
8263 e = op_overload(sc);
8264 if (e)
8265 {
8266 e = new CmpExp(op, loc, e, new IntegerExp(loc, 0, Type::tint32));
8267 e = e->semantic(sc);
8268 return e;
8269 }
8270
8271 typeCombine(sc);
8272 type = Type::tboolean;
8273
8274 // Special handling for array comparisons
8275 t1 = e1->type->toBasetype();
8276 t2 = e2->type->toBasetype();
8277 if ((t1->ty == Tarray || t1->ty == Tsarray) &&
8278 (t2->ty == Tarray || t2->ty == Tsarray))
8279 {
8280 if (!t1->next->equals(t2->next))
8281 error("array comparison type mismatch, %s vs %s", t1->next->toChars(), t2->next->toChars());
8282 e = this;
8283 }
8284 else if (t1->ty == Tstruct || t2->ty == Tstruct ||
8285 (t1->ty == Tclass && t2->ty == Tclass))
8286 {
8287 if (t2->ty == Tstruct)
8288 error("need member function opCmp() for %s %s to compare", t2->toDsymbol(sc)->kind(), t2->toChars());
8289 else
8290 error("need member function opCmp() for %s %s to compare", t1->toDsymbol(sc)->kind(), t1->toChars());
8291 e = this;
8292 }
8293 #if 1
8294 else if (t1->iscomplex() || t2->iscomplex())
8295 {
8296 error("compare not defined for complex operands");
8297 e = new IntegerExp(0);
8298 }
8299 #endif
8300 else
8301 e = this;
8302 return e;
8303 }
8304
8305 int CmpExp::isBit()
8306 {
8307 return TRUE;
8308 }
8309
8310
8311 /************************************************************/
8312
8313 EqualExp::EqualExp(enum TOK op, Loc loc, Expression *e1, Expression *e2)
8314 : BinExp(loc, op, sizeof(EqualExp), e1, e2)
8315 {
8316 }
8317
8318 Expression *EqualExp::semantic(Scope *sc)
8319 { Expression *e;
8320 Type *t1;
8321 Type *t2;
8322
8323 //printf("EqualExp::semantic('%s')\n", toChars());
8324 if (type)
8325 return this;
8326
8327 BinExp::semanticp(sc);
8328
8329 /* Before checking for operator overloading, check to see if we're
8330 * comparing the addresses of two statics. If so, we can just see
8331 * if they are the same symbol.
8332 */
8333 if (e1->op == TOKaddress && e2->op == TOKaddress)
8334 { AddrExp *ae1 = (AddrExp *)e1;
8335 AddrExp *ae2 = (AddrExp *)e2;
8336
8337 if (ae1->e1->op == TOKvar && ae2->e1->op == TOKvar)
8338 { VarExp *ve1 = (VarExp *)ae1->e1;
8339 VarExp *ve2 = (VarExp *)ae2->e1;
8340
8341 if (ve1->var == ve2->var /*|| ve1->var->toSymbol() == ve2->var->toSymbol()*/)
8342 {
8343 // They are the same, result is 'true' for ==, 'false' for !=
8344 e = new IntegerExp(loc, (op == TOKequal), Type::tboolean);
8345 return e;
8346 }
8347 }
8348 }
8349
8350 //if (e2->op != TOKnull)
8351 {
8352 e = op_overload(sc);
8353 if (e)
8354 {
8355 if (op == TOKnotequal)
8356 {
8357 e = new NotExp(e->loc, e);
8358 e = e->semantic(sc);
8359 }
8360 return e;
8361 }
8362 }
8363
8364 e = typeCombine(sc);
8365 type = Type::tboolean;
8366
8367 // Special handling for array comparisons
8368 t1 = e1->type->toBasetype();
8369 t2 = e2->type->toBasetype();
8370 if ((t1->ty == Tarray || t1->ty == Tsarray) &&
8371 (t2->ty == Tarray || t2->ty == Tsarray))
8372 {
8373 if (!t1->next->equals(t2->next))
8374 error("array comparison type mismatch, %s vs %s", t1->next->toChars(), t2->next->toChars());
8375 }
8376 else
8377 {
8378 if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating())
8379 {
8380 // Cast both to complex
8381 e1 = e1->castTo(sc, Type::tcomplex80);
8382 e2 = e2->castTo(sc, Type::tcomplex80);
8383 }
8384 }
8385 return e;
8386 }
8387
8388 int EqualExp::isBit()
8389 {
8390 return TRUE;
8391 }
8392
8393
8394
8395 /************************************************************/
8396
8397 IdentityExp::IdentityExp(enum TOK op, Loc loc, Expression *e1, Expression *e2)
8398 : BinExp(loc, op, sizeof(IdentityExp), e1, e2)
8399 {
8400 }
8401
8402 Expression *IdentityExp::semantic(Scope *sc)
8403 {
8404 if (type)
8405 return this;
8406
8407 BinExp::semanticp(sc);
8408 type = Type::tboolean;
8409 typeCombine(sc);
8410 if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating())
8411 {
8412 // Cast both to complex
8413 e1 = e1->castTo(sc, Type::tcomplex80);
8414 e2 = e2->castTo(sc, Type::tcomplex80);
8415 }
8416 return this;
8417 }
8418
8419 int IdentityExp::isBit()
8420 {
8421 return TRUE;
8422 }
8423
8424
8425 /****************************************************************/
8426
8427 CondExp::CondExp(Loc loc, Expression *econd, Expression *e1, Expression *e2)
8428 : BinExp(loc, TOKquestion, sizeof(CondExp), e1, e2)
8429 {
8430 this->econd = econd;
8431 }
8432
8433 Expression *CondExp::syntaxCopy()
8434 {
8435 return new CondExp(loc, econd->syntaxCopy(), e1->syntaxCopy(), e2->syntaxCopy());
8436 }
8437
8438
8439 Expression *CondExp::semantic(Scope *sc)
8440 { Type *t1;
8441 Type *t2;
8442 unsigned cs0;
8443 unsigned cs1;
8444
8445 #if LOGSEMANTIC
8446 printf("CondExp::semantic('%s')\n", toChars());
8447 #endif
8448 if (type)
8449 return this;
8450
8451 econd = econd->semantic(sc);
8452 econd = resolveProperties(sc, econd);
8453 econd = econd->checkToPointer();
8454 econd = econd->checkToBoolean();
8455
8456 #if 0 /* this cannot work right because the types of e1 and e2
8457 * both contribute to the type of the result.
8458 */
8459 if (sc->flags & SCOPEstaticif)
8460 {
8461 /* If in static if, don't evaluate what we don't have to.
8462 */
8463 econd = econd->optimize(WANTflags);
8464 if (econd->isBool(TRUE))
8465 {
8466 e1 = e1->semantic(sc);
8467 e1 = resolveProperties(sc, e1);
8468 return e1;
8469 }
8470 else if (econd->isBool(FALSE))
8471 {
8472 e2 = e2->semantic(sc);
8473 e2 = resolveProperties(sc, e2);
8474 return e2;
8475 }
8476 }
8477 #endif
8478
8479
8480 cs0 = sc->callSuper;
8481 e1 = e1->semantic(sc);
8482 e1 = resolveProperties(sc, e1);
8483 cs1 = sc->callSuper;
8484 sc->callSuper = cs0;
8485 e2 = e2->semantic(sc);
8486 e2 = resolveProperties(sc, e2);
8487 sc->mergeCallSuper(loc, cs1);
8488
8489
8490 // If either operand is void, the result is void
8491 t1 = e1->type;
8492 t2 = e2->type;
8493 if (t1->ty == Tvoid || t2->ty == Tvoid)
8494 type = Type::tvoid;
8495 else if (t1 == t2)
8496 type = t1;
8497 else
8498 {
8499 typeCombine(sc);
8500 switch (e1->type->toBasetype()->ty)
8501 {
8502 case Tcomplex32:
8503 case Tcomplex64:
8504 case Tcomplex80:
8505 e2 = e2->castTo(sc, e1->type);
8506 break;
8507 }
8508 switch (e2->type->toBasetype()->ty)
8509 {
8510 case Tcomplex32:
8511 case Tcomplex64:
8512 case Tcomplex80:
8513 e1 = e1->castTo(sc, e2->type);
8514 break;
8515 }
8516 }
8517 return this;
8518 }
8519
8520 Expression *CondExp::toLvalue(Scope *sc, Expression *ex)
8521 {
8522 PtrExp *e;
8523
8524 // convert (econd ? e1 : e2) to *(econd ? &e1 : &e2)
8525 e = new PtrExp(loc, this, type);
8526
8527 e1 = e1->addressOf(sc);
8528 //e1 = e1->toLvalue(sc, NULL);
8529
8530 e2 = e2->addressOf(sc);
8531 //e2 = e2->toLvalue(sc, NULL);
8532
8533 typeCombine(sc);
8534
8535 type = e2->type;
8536 return e;
8537 }
8538
8539 Expression *CondExp::modifiableLvalue(Scope *sc, Expression *e)
8540 {
8541 error("conditional expression %s is not a modifiable lvalue", toChars());
8542 return this;
8543 }
8544
8545 void CondExp::checkEscape()
8546 {
8547 e1->checkEscape();
8548 e2->checkEscape();
8549 }
8550
8551
8552 Expression *CondExp::checkToBoolean()
8553 {
8554 e1 = e1->checkToBoolean();
8555 e2 = e2->checkToBoolean();
8556 return this;
8557 }
8558
8559 int CondExp::checkSideEffect(int flag)
8560 {
8561 if (flag == 2)
8562 {
8563 return econd->checkSideEffect(2) ||
8564 e1->checkSideEffect(2) ||
8565 e2->checkSideEffect(2);
8566 }
8567 else
8568 {
8569 econd->checkSideEffect(1);
8570 e1->checkSideEffect(flag);
8571 return e2->checkSideEffect(flag);
8572 }
8573 }
8574
8575 void CondExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
8576 {
8577 expToCBuffer(buf, hgs, econd, PREC_oror);
8578 buf->writestring(" ? ");
8579 expToCBuffer(buf, hgs, e1, PREC_expr);
8580 buf->writestring(" : ");
8581 expToCBuffer(buf, hgs, e2, PREC_cond);
8582 }
8583
8584