comparison tango/lib/compiler/llvmdc/lifetime.d @ 132:1700239cab2e trunk

[svn r136] MAJOR UNSTABLE UPDATE!!! Initial commit after moving to Tango instead of Phobos. Lots of bugfixes... This build is not suitable for most things.
author lindquist
date Fri, 11 Jan 2008 17:57:40 +0100
parents
children 44a95ac7368a
comparison
equal deleted inserted replaced
131:5825d48b27d1 132:1700239cab2e
1 /**
2 * This module contains all functions related to an object's lifetime:
3 * allocation, resizing, deallocation, and finalization.
4 *
5 * Copyright: Copyright (C) 2004-2007 Digital Mars, www.digitalmars.com.
6 * All rights reserved.
7 * License:
8 * This software is provided 'as-is', without any express or implied
9 * warranty. In no event will the authors be held liable for any damages
10 * arising from the use of this software.
11 *
12 * Permission is granted to anyone to use this software for any purpose,
13 * including commercial applications, and to alter it and redistribute it
14 * freely, in both source and binary form, subject to the following
15 * restrictions:
16 *
17 * o The origin of this software must not be misrepresented; you must not
18 * claim that you wrote the original software. If you use this software
19 * in a product, an acknowledgment in the product documentation would be
20 * appreciated but is not required.
21 * o Altered source versions must be plainly marked as such, and must not
22 * be misrepresented as being the original software.
23 * o This notice may not be removed or altered from any source
24 * distribution.
25 * Authors: Walter Bright, Sean Kelly, Tomas Lindquist Olsen
26 */
27 module lifetime;
28
29
30 private
31 {
32 import tango.stdc.stdlib;
33 import tango.stdc.string;
34 import tango.stdc.stdarg;
35 debug(PRINTF) import tango.stdc.stdio;
36 }
37
38
39 private
40 {
41 enum BlkAttr : uint
42 {
43 FINALIZE = 0b0000_0001,
44 NO_SCAN = 0b0000_0010,
45 NO_MOVE = 0b0000_0100,
46 ALL_BITS = 0b1111_1111
47 }
48
49 struct BlkInfo
50 {
51 void* base;
52 size_t size;
53 uint attr;
54 }
55
56 extern (C) uint gc_getAttr( void* p );
57 extern (C) uint gc_setAttr( void* p, uint a );
58 extern (C) uint gc_clrAttr( void* p, uint a );
59
60 extern (C) void* gc_malloc( size_t sz, uint ba = 0 );
61 extern (C) void* gc_calloc( size_t sz, uint ba = 0 );
62 extern (C) size_t gc_extend( void* p, size_t mx, size_t sz );
63 extern (C) void gc_free( void* p );
64
65 extern (C) void* gc_addrOf( void* p );
66 extern (C) size_t gc_sizeOf( void* p );
67 extern (C) BlkInfo gc_query( void* p );
68
69 extern (C) bool onCollectResource( Object o );
70 extern (C) void onFinalizeError( ClassInfo c, Exception e );
71 extern (C) void onOutOfMemoryError();
72
73 extern (C) void _d_monitordelete(Object h, bool det = true);
74
75 enum
76 {
77 PAGESIZE = 4096
78 }
79 }
80
81
82 /**
83 *
84 */
85 extern (C) Object _d_newclass(ClassInfo ci)
86 {
87 void* p;
88
89 debug(PRINTF) printf("_d_newclass(ci = %p, %s)\n", ci, cast(char *)ci.name);
90 if (ci.flags & 1) // if COM object
91 { /* COM objects are not garbage collected, they are reference counted
92 * using AddRef() and Release(). They get free'd by C's free()
93 * function called by Release() when Release()'s reference count goes
94 * to zero.
95 */
96 p = tango.stdc.stdlib.malloc(ci.init.length);
97 if (!p)
98 onOutOfMemoryError();
99 }
100 else
101 {
102 p = gc_malloc(ci.init.length,
103 BlkAttr.FINALIZE | (ci.flags & 2 ? BlkAttr.NO_SCAN : 0));
104 debug(PRINTF) printf(" p = %p\n", p);
105 }
106
107 debug(PRINTF)
108 {
109 printf("p = %p\n", p);
110 printf("ci = %p, ci.init = %p, len = %d\n", ci, ci.init, ci.init.length);
111 printf("vptr = %p\n", *cast(void**) ci.init);
112 printf("vtbl[0] = %p\n", (*cast(void***) ci.init)[0]);
113 printf("vtbl[1] = %p\n", (*cast(void***) ci.init)[1]);
114 printf("init[0] = %x\n", (cast(uint*) ci.init)[0]);
115 printf("init[1] = %x\n", (cast(uint*) ci.init)[1]);
116 printf("init[2] = %x\n", (cast(uint*) ci.init)[2]);
117 printf("init[3] = %x\n", (cast(uint*) ci.init)[3]);
118 printf("init[4] = %x\n", (cast(uint*) ci.init)[4]);
119 }
120
121 // initialize it
122 (cast(byte*) p)[0 .. ci.init.length] = ci.init[];
123
124 debug(PRINTF) printf("initialization done\n");
125 return cast(Object) p;
126 }
127
128 /+
129
130 /**
131 *
132 */
133 extern (C) void _d_delinterface(void** p)
134 {
135 if (*p)
136 {
137 Interface* pi = **cast(Interface ***)*p;
138 Object o = cast(Object)(*p - pi.offset);
139
140 _d_delclass(&o);
141 *p = null;
142 }
143 }
144
145 +/
146
147 // used for deletion
148 private extern (D) alias void function(Object) fp_t;
149
150 /+
151
152
153 /**
154 *
155 */
156 extern (C) void _d_delclass(Object* p)
157 {
158 if (*p)
159 {
160 debug(PRINTF) printf("_d_delclass(%p)\n", *p);
161
162 ClassInfo **pc = cast(ClassInfo **)*p;
163 if (*pc)
164 {
165 ClassInfo c = **pc;
166
167 rt_finalize(cast(void*) *p);
168
169 if (c.deallocator)
170 {
171 fp_t fp = cast(fp_t)c.deallocator;
172 (*fp)(*p); // call deallocator
173 *p = null;
174 return;
175 }
176 }
177 else
178 {
179 rt_finalize(cast(void*) *p);
180 }
181 gc_free(cast(void*) *p);
182 *p = null;
183 }
184 }
185
186
187 /**
188 *
189 */
190 struct Array
191 {
192 size_t length;
193 byte* data;
194 }
195
196
197 /**
198 * Allocate a new array of length elements.
199 * ti is the type of the resulting array, or pointer to element.
200 * (For when the array is initialized to 0)
201 */
202 extern (C) Array _d_newarrayT(TypeInfo ti, size_t length)
203 {
204 void* p;
205 Array result;
206 auto size = ti.next.tsize(); // array element size
207
208 debug(PRINTF) printf("_d_newarrayT(length = x%x, size = %d)\n", length, size);
209 if (length == 0 || size == 0)
210 return Array();
211
212 version (D_InlineAsm_X86)
213 {
214 asm
215 {
216 mov EAX,size ;
217 mul EAX,length ;
218 mov size,EAX ;
219 jc Loverflow ;
220 }
221 }
222 else
223 size *= length;
224 p = gc_malloc(size + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
225 debug(PRINTF) printf(" p = %p\n", p);
226 memset(p, 0, size);
227 return Array(length, p);
228
229 Loverflow:
230 onOutOfMemoryError();
231 }
232
233 /**
234 * For when the array has a non-zero initializer.
235 */
236 extern (C) Array _d_newarrayiT(TypeInfo ti, size_t length)
237 {
238 Array result;
239 auto size = ti.next.tsize(); // array element size
240
241 debug(PRINTF) printf("_d_newarrayiT(length = %d, size = %d)\n", length, size);
242
243 if (length == 0 || size == 0)
244 result = Array();
245 else
246 {
247 auto initializer = ti.next.init();
248 auto isize = initializer.length;
249 auto q = initializer.ptr;
250 version (D_InlineAsm_X86)
251 {
252 asm
253 {
254 mov EAX,size ;
255 mul EAX,length ;
256 mov size,EAX ;
257 jc Loverflow ;
258 }
259 }
260 else
261 size *= length;
262 auto p = gc_malloc(size + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
263 debug(PRINTF) printf(" p = %p\n", p);
264 if (isize == 1)
265 memset(p, *cast(ubyte*)q, size);
266 else if (isize == int.sizeof)
267 {
268 int init = *cast(int*)q;
269 size /= int.sizeof;
270 for (size_t u = 0; u < size; u++)
271 {
272 (cast(int*)p)[u] = init;
273 }
274 }
275 else
276 {
277 for (size_t u = 0; u < size; u += isize)
278 {
279 memcpy(p + u, q, isize);
280 }
281 }
282 va_end(q);
283 result = Array(length, p);
284 }
285 return result;
286
287 Loverflow:
288 onOutOfMemoryError();
289 }
290
291 /**
292 *
293 */
294 extern (C) Array _d_newarraymT(TypeInfo ti, int ndims, ...)
295 {
296 Array result;
297
298 debug(PRINTF) printf("_d_newarraymT(ndims = %d)\n", ndims);
299 if (ndims == 0)
300 result = Array();
301 else
302 { va_list q;
303 va_start!(int)(q, ndims);
304
305 void[] foo(TypeInfo ti, size_t* pdim, int ndims)
306 {
307 size_t dim = *pdim;
308 void[] p;
309
310 debug(PRINTF) printf("foo(ti = %p, ti.next = %p, dim = %d, ndims = %d\n", ti, ti.next, dim, ndims);
311 if (ndims == 1)
312 {
313 return _d_newarrayT(ti, dim);
314 }
315 else
316 {
317 p = gc_malloc(dim * (void[]).sizeof + 1)[0 .. dim];
318 for (int i = 0; i < dim; i++)
319 {
320 (cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
321 }
322 }
323 return p;
324 }
325
326 size_t* pdim = cast(size_t *)q;
327 void[] arr = foo(ti, pdim, ndims);
328 result = Arra
329 debug(PRINTF) printf("result = %llx\n", result);
330
331 version (none)
332 {
333 for (int i = 0; i < ndims; i++)
334 {
335 printf("index %d: %d\n", i, va_arg!(int)(q));
336 }
337 }
338 va_end(q);
339 }
340 return result;
341 }
342
343
344 /**
345 *
346 */
347 extern (C) Array _d_newarraymiT(TypeInfo ti, int ndims, ...)
348 {
349 Array result;
350
351 debug(PRINTF) printf("_d_newarraymiT(ndims = %d)\n", ndims);
352 if (ndims == 0)
353 result = 0;
354 else
355 {
356 va_list q;
357 va_start!(int)(q, ndims);
358
359 void[] foo(TypeInfo ti, size_t* pdim, int ndims)
360 {
361 size_t dim = *pdim;
362 void[] p;
363
364 if (ndims == 1)
365 {
366 auto r = _d_newarrayiT(ti, dim);
367 p = *cast(void[]*)(&r);
368 }
369 else
370 {
371 p = gc_malloc(dim * (void[]).sizeof + 1)[0 .. dim];
372 for (int i = 0; i < dim; i++)
373 {
374 (cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
375 }
376 }
377 return p;
378 }
379
380 size_t* pdim = cast(size_t *)q;
381 result = cast(ulong)foo(ti, pdim, ndims);
382 debug(PRINTF) printf("result = %llx\n", result);
383
384 version (none)
385 {
386 for (int i = 0; i < ndims; i++)
387 {
388 printf("index %d: %d\n", i, va_arg!(int)(q));
389 printf("init = %d\n", va_arg!(int)(q));
390 }
391 }
392 va_end(q);
393 }
394 return result;
395 }
396
397 +/
398
399 /**
400 *
401 */
402 void* _d_allocmemory(size_t nbytes)
403 {
404 return gc_malloc(nbytes);
405 }
406
407 /+
408
409 /**
410 *
411 */
412 extern (C) void _d_delarray(Array *p)
413 {
414 if (p)
415 {
416 assert(!p.length || p.data);
417
418 if (p.data)
419 gc_free(p.data);
420 p.data = null;
421 p.length = 0;
422 }
423 }
424
425 +/
426
427 /**
428 *
429 */
430 extern (C) void _d_delmemory(void* *p)
431 {
432 if (*p)
433 {
434 gc_free(*p);
435 *p = null;
436 }
437 }
438
439
440 /**
441 *
442 */
443 extern (C) void _d_callfinalizer(void* p)
444 {
445 rt_finalize( p );
446 }
447
448
449 /**
450 *
451 */
452 extern (C) void rt_finalize(void* p, bool det = true)
453 {
454 debug(PRINTF) printf("rt_finalize(p = %p)\n", p);
455
456 if (p) // not necessary if called from gc
457 {
458 ClassInfo** pc = cast(ClassInfo**)p;
459
460 if (*pc)
461 {
462 ClassInfo c = **pc;
463
464 try
465 {
466 if (det || onCollectResource(cast(Object)p))
467 {
468 do
469 {
470 if (c.destructor)
471 {
472 fp_t fp = cast(fp_t)c.destructor;
473 (*fp)(cast(Object)p); // call destructor
474 }
475 c = c.base;
476 } while (c);
477 }
478 if ((cast(void**)p)[1]) // if monitor is not null
479 _d_monitordelete(cast(Object)p, det);
480 }
481 catch (Exception e)
482 {
483 onFinalizeError(**pc, e);
484 }
485 finally
486 {
487 *pc = null; // zero vptr
488 }
489 }
490 }
491 }
492
493 /+
494
495 /**
496 * Resize dynamic arrays with 0 initializers.
497 */
498 extern (C) byte[] _d_arraysetlengthT(TypeInfo ti, size_t newlength, Array *p)
499 in
500 {
501 assert(ti);
502 assert(!p.length || p.data);
503 }
504 body
505 {
506 byte* newdata;
507 size_t sizeelem = ti.next.tsize();
508
509 debug(PRINTF)
510 {
511 printf("_d_arraysetlengthT(p = %p, sizeelem = %d, newlength = %d)\n", p, sizeelem, newlength);
512 if (p)
513 printf("\tp.data = %p, p.length = %d\n", p.data, p.length);
514 }
515
516 if (newlength)
517 {
518 version (D_InlineAsm_X86)
519 {
520 size_t newsize = void;
521
522 asm
523 {
524 mov EAX, newlength;
525 mul EAX, sizeelem;
526 mov newsize, EAX;
527 jc Loverflow;
528 }
529 }
530 else
531 {
532 size_t newsize = sizeelem * newlength;
533
534 if (newsize / newlength != sizeelem)
535 goto Loverflow;
536 }
537
538 debug(PRINTF) printf("newsize = %x, newlength = %x\n", newsize, newlength);
539
540 if (p.data)
541 {
542 newdata = p.data;
543 if (newlength > p.length)
544 {
545 size_t size = p.length * sizeelem;
546 auto info = gc_query(p.data);
547
548 if (info.size <= newsize || info.base != p.data)
549 {
550 if (info.size >= PAGESIZE && info.base == p.data)
551 { // Try to extend in-place
552 auto u = gc_extend(p.data, (newsize + 1) - info.size, (newsize + 1) - info.size);
553 if (u)
554 {
555 goto L1;
556 }
557 }
558 newdata = cast(byte *)gc_malloc(newsize + 1, info.attr);
559 newdata[0 .. size] = p.data[0 .. size];
560 }
561 L1:
562 newdata[size .. newsize] = 0;
563 }
564 }
565 else
566 {
567 newdata = cast(byte *)gc_calloc(newsize + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
568 }
569 }
570 else
571 {
572 newdata = p.data;
573 }
574
575 p.data = newdata;
576 p.length = newlength;
577 return newdata[0 .. newlength];
578
579 Loverflow:
580 onOutOfMemoryError();
581 }
582
583
584 /**
585 * Resize arrays for non-zero initializers.
586 * p pointer to array lvalue to be updated
587 * newlength new .length property of array
588 * sizeelem size of each element of array
589 * initsize size of initializer
590 * ... initializer
591 */
592 extern (C) byte[] _d_arraysetlengthiT(TypeInfo ti, size_t newlength, Array *p)
593 in
594 {
595 assert(!p.length || p.data);
596 }
597 body
598 {
599 byte* newdata;
600 size_t sizeelem = ti.next.tsize();
601 void[] initializer = ti.next.init();
602 size_t initsize = initializer.length;
603
604 assert(sizeelem);
605 assert(initsize);
606 assert(initsize <= sizeelem);
607 assert((sizeelem / initsize) * initsize == sizeelem);
608
609 debug(PRINTF)
610 {
611 printf("_d_arraysetlengthiT(p = %p, sizeelem = %d, newlength = %d, initsize = %d)\n", p, sizeelem, newlength, initsize);
612 if (p)
613 printf("\tp.data = %p, p.length = %d\n", p.data, p.length);
614 }
615
616 if (newlength)
617 {
618 version (D_InlineAsm_X86)
619 {
620 size_t newsize = void;
621
622 asm
623 {
624 mov EAX,newlength ;
625 mul EAX,sizeelem ;
626 mov newsize,EAX ;
627 jc Loverflow ;
628 }
629 }
630 else
631 {
632 size_t newsize = sizeelem * newlength;
633
634 if (newsize / newlength != sizeelem)
635 goto Loverflow;
636 }
637 debug(PRINTF) printf("newsize = %x, newlength = %x\n", newsize, newlength);
638
639 size_t size = p.length * sizeelem;
640
641 if (p.data)
642 {
643 newdata = p.data;
644 if (newlength > p.length)
645 {
646 auto info = gc_query(p.data);
647
648 if (info.size <= newsize || info.base != p.data)
649 {
650 if (info.size >= PAGESIZE && info.base == p.data)
651 { // Try to extend in-place
652 auto u = gc_extend(p.data, (newsize + 1) - info.size, (newsize + 1) - info.size);
653 if (u)
654 {
655 goto L1;
656 }
657 }
658 newdata = cast(byte *)gc_malloc(newsize + 1, info.attr);
659 newdata[0 .. size] = p.data[0 .. size];
660 L1: ;
661 }
662 }
663 }
664 else
665 {
666 newdata = cast(byte *)gc_malloc(newsize + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
667 }
668
669 auto q = initializer.ptr; // pointer to initializer
670
671 if (newsize > size)
672 {
673 if (initsize == 1)
674 {
675 debug(PRINTF) printf("newdata = %p, size = %d, newsize = %d, *q = %d\n", newdata, size, newsize, *cast(byte*)q);
676 newdata[size .. newsize] = *(cast(byte*)q);
677 }
678 else
679 {
680 for (size_t u = size; u < newsize; u += initsize)
681 {
682 memcpy(newdata + u, q, initsize);
683 }
684 }
685 }
686 }
687 else
688 {
689 newdata = p.data;
690 }
691
692 p.data = newdata;
693 p.length = newlength;
694 return newdata[0 .. newlength];
695
696 Loverflow:
697 onOutOfMemoryError();
698 }
699
700
701 /**
702 * Append y[] to array x[].
703 * size is size of each array element.
704 */
705 extern (C) long _d_arrayappendT(TypeInfo ti, Array *px, byte[] y)
706 {
707 auto sizeelem = ti.next.tsize(); // array element size
708 auto info = gc_query(px.data);
709 auto length = px.length;
710 auto newlength = length + y.length;
711 auto newsize = newlength * sizeelem;
712
713 if (info.size < newsize || info.base != px.data)
714 { byte* newdata;
715
716 if (info.size >= PAGESIZE && info.base == px.data)
717 { // Try to extend in-place
718 auto u = gc_extend(px.data, (newsize + 1) - info.size, (newsize + 1) - info.size);
719 if (u)
720 {
721 goto L1;
722 }
723 }
724 newdata = cast(byte *)gc_malloc(newCapacity(newlength, sizeelem) + 1, info.attr);
725 memcpy(newdata, px.data, length * sizeelem);
726 px.data = newdata;
727 }
728 L1:
729 px.length = newlength;
730 memcpy(px.data + length * sizeelem, y.ptr, y.length * sizeelem);
731 return *cast(long*)px;
732 }
733
734
735 /**
736 *
737 */
738 size_t newCapacity(size_t newlength, size_t size)
739 {
740 version(none)
741 {
742 size_t newcap = newlength * size;
743 }
744 else
745 {
746 /*
747 * Better version by Dave Fladebo:
748 * This uses an inverse logorithmic algorithm to pre-allocate a bit more
749 * space for larger arrays.
750 * - Arrays smaller than PAGESIZE bytes are left as-is, so for the most
751 * common cases, memory allocation is 1 to 1. The small overhead added
752 * doesn't affect small array perf. (it's virtually the same as
753 * current).
754 * - Larger arrays have some space pre-allocated.
755 * - As the arrays grow, the relative pre-allocated space shrinks.
756 * - The logorithmic algorithm allocates relatively more space for
757 * mid-size arrays, making it very fast for medium arrays (for
758 * mid-to-large arrays, this turns out to be quite a bit faster than the
759 * equivalent realloc() code in C, on Linux at least. Small arrays are
760 * just as fast as GCC).
761 * - Perhaps most importantly, overall memory usage and stress on the GC
762 * is decreased significantly for demanding environments.
763 */
764 size_t newcap = newlength * size;
765 size_t newext = 0;
766
767 if (newcap > PAGESIZE)
768 {
769 //double mult2 = 1.0 + (size / log10(pow(newcap * 2.0,2.0)));
770
771 // redo above line using only integer math
772
773 static int log2plus1(size_t c)
774 { int i;
775
776 if (c == 0)
777 i = -1;
778 else
779 for (i = 1; c >>= 1; i++)
780 {
781 }
782 return i;
783 }
784
785 /* The following setting for mult sets how much bigger
786 * the new size will be over what is actually needed.
787 * 100 means the same size, more means proportionally more.
788 * More means faster but more memory consumption.
789 */
790 //long mult = 100 + (1000L * size) / (6 * log2plus1(newcap));
791 long mult = 100 + (1000L * size) / log2plus1(newcap);
792
793 // testing shows 1.02 for large arrays is about the point of diminishing return
794 if (mult < 102)
795 mult = 102;
796 newext = cast(size_t)((newcap * mult) / 100);
797 newext -= newext % size;
798 debug(PRINTF) printf("mult: %2.2f, alloc: %2.2f\n",mult/100.0,newext / cast(double)size);
799 }
800 newcap = newext > newcap ? newext : newcap;
801 debug(PRINTF) printf("newcap = %d, newlength = %d, size = %d\n", newcap, newlength, size);
802 }
803 return newcap;
804 }
805
806
807 /**
808 *
809 */
810 extern (C) byte[] _d_arrayappendcT(TypeInfo ti, inout byte[] x, ...)
811 {
812 auto sizeelem = ti.next.tsize(); // array element size
813 auto info = gc_query(x.ptr);
814 auto length = x.length;
815 auto newlength = length + 1;
816 auto newsize = newlength * sizeelem;
817
818 assert(info.size == 0 || length * sizeelem <= info.size);
819
820 debug(PRINTF) printf("_d_arrayappendcT(sizeelem = %d, ptr = %p, length = %d, cap = %d)\n", sizeelem, x.ptr, x.length, info.size);
821
822 if (info.size <= newsize || info.base != x.ptr)
823 { byte* newdata;
824
825 if (info.size >= PAGESIZE && info.base == x.ptr)
826 { // Try to extend in-place
827 auto u = gc_extend(x.ptr, (newsize + 1) - info.size, (newsize + 1) - info.size);
828 if (u)
829 {
830 goto L1;
831 }
832 }
833 debug(PRINTF) printf("_d_arrayappendcT(length = %d, newlength = %d, cap = %d)\n", length, newlength, info.size);
834 auto newcap = newCapacity(newlength, sizeelem);
835 assert(newcap >= newlength * sizeelem);
836 newdata = cast(byte *)gc_malloc(newcap + 1, info.attr);
837 memcpy(newdata, x.ptr, length * sizeelem);
838 (cast(void**)(&x))[1] = newdata;
839 }
840 L1:
841 byte *argp = cast(byte *)(&ti + 2);
842
843 *cast(size_t *)&x = newlength;
844 x.ptr[length * sizeelem .. newsize] = argp[0 .. sizeelem];
845 assert((cast(size_t)x.ptr & 15) == 0);
846 assert(gc_sizeOf(x.ptr) > x.length * sizeelem);
847 return x;
848 }
849
850
851 /**
852 *
853 */
854 extern (C) byte[] _d_arraycatT(TypeInfo ti, byte[] x, byte[] y)
855 out (result)
856 {
857 auto sizeelem = ti.next.tsize(); // array element size
858 debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d => %d,%p)\n", x.length, x.ptr, y.length, y.ptr, sizeelem, result.length, result.ptr);
859 assert(result.length == x.length + y.length);
860 for (size_t i = 0; i < x.length * sizeelem; i++)
861 assert((cast(byte*)result)[i] == (cast(byte*)x)[i]);
862 for (size_t i = 0; i < y.length * sizeelem; i++)
863 assert((cast(byte*)result)[x.length * sizeelem + i] == (cast(byte*)y)[i]);
864
865 size_t cap = gc_sizeOf(result.ptr);
866 assert(!cap || cap > result.length * sizeelem);
867 }
868 body
869 {
870 version (none)
871 {
872 /* Cannot use this optimization because:
873 * char[] a, b;
874 * char c = 'a';
875 * b = a ~ c;
876 * c = 'b';
877 * will change the contents of b.
878 */
879 if (!y.length)
880 return x;
881 if (!x.length)
882 return y;
883 }
884
885 debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p)\n", x.length, x.ptr, y.length, y.ptr);
886 auto sizeelem = ti.next.tsize(); // array element size
887 debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d)\n", x.length, x.ptr, y.length, y.ptr, sizeelem);
888 size_t xlen = x.length * sizeelem;
889 size_t ylen = y.length * sizeelem;
890 size_t len = xlen + ylen;
891
892 if (!len)
893 return null;
894
895 byte* p = cast(byte*)gc_malloc(len + 1, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
896 memcpy(p, x.ptr, xlen);
897 memcpy(p + xlen, y.ptr, ylen);
898 p[len] = 0;
899 return p[0 .. x.length + y.length];
900 }
901
902
903 /**
904 *
905 */
906 extern (C) byte[] _d_arraycatnT(TypeInfo ti, uint n, ...)
907 { void* a;
908 size_t length;
909 byte[]* p;
910 uint i;
911 byte[] b;
912 auto size = ti.next.tsize(); // array element size
913
914 p = cast(byte[]*)(&n + 1);
915
916 for (i = 0; i < n; i++)
917 {
918 b = *p++;
919 length += b.length;
920 }
921 if (!length)
922 return null;
923
924 a = gc_malloc(length * size, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
925 p = cast(byte[]*)(&n + 1);
926
927 uint j = 0;
928 for (i = 0; i < n; i++)
929 {
930 b = *p++;
931 if (b.length)
932 {
933 memcpy(a + j, b.ptr, b.length * size);
934 j += b.length * size;
935 }
936 }
937
938 byte[] result;
939 *cast(int *)&result = length; // jam length
940 (cast(void **)&result)[1] = a; // jam ptr
941 return result;
942 }
943
944
945 /**
946 *
947 */
948 extern (C) void* _d_arrayliteralT(TypeInfo ti, size_t length, ...)
949 {
950 auto sizeelem = ti.next.tsize(); // array element size
951 void* result;
952
953 debug(PRINTF) printf("_d_arrayliteralT(sizeelem = %d, length = %d)\n", sizeelem, length);
954 if (length == 0 || sizeelem == 0)
955 result = null;
956 else
957 {
958 result = gc_malloc(length * sizeelem, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
959
960 va_list q;
961 va_start!(size_t)(q, length);
962
963 size_t stacksize = (sizeelem + int.sizeof - 1) & ~(int.sizeof - 1);
964
965 if (stacksize == sizeelem)
966 {
967 memcpy(result, q, length * sizeelem);
968 }
969 else
970 {
971 for (size_t i = 0; i < length; i++)
972 {
973 memcpy(result + i * sizeelem, q, sizeelem);
974 q += stacksize;
975 }
976 }
977
978 va_end(q);
979 }
980 return result;
981 }
982
983 +/
984
985
986 /**
987 * Support for array.dup property.
988 */
989 struct Array2
990 {
991 size_t length;
992 void* ptr;
993 }
994
995
996 /**
997 *
998 */
999 extern (C) Array2 _adDupT(TypeInfo ti, Array2 a)
1000 out (result)
1001 {
1002 auto sizeelem = ti.next.tsize(); // array element size
1003 assert(memcmp(result.ptr, a.ptr, a.length * sizeelem) == 0);
1004 }
1005 body
1006 {
1007 Array2 r;
1008
1009 if (a.length)
1010 {
1011 auto sizeelem = ti.next.tsize(); // array element size
1012 auto size = a.length * sizeelem;
1013 r.ptr = gc_malloc(size, !(ti.next.flags() & 1) ? BlkAttr.NO_SCAN : 0);
1014 r.length = a.length;
1015 memcpy(r.ptr, a.ptr, size);
1016 }
1017 return r;
1018 }
1019
1020
1021 unittest
1022 {
1023 int[] a;
1024 int[] b;
1025 int i;
1026
1027 a = new int[3];
1028 a[0] = 1; a[1] = 2; a[2] = 3;
1029 b = a.dup;
1030 assert(b.length == 3);
1031 for (i = 0; i < 3; i++)
1032 assert(b[i] == i + 1);
1033 }